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1 Introduction

Most research in generalized quantifier theory has been directed towards monadic
quantification in natural language. The recent monograph [1] bears witness to
this tendency, devoting more than 90% of its volume to the discussion of monadic
quantifiers. It is then clear that definability and complexity of monadic quanti-
fiers has been extensively studied. For example, it is known that monadic quan-
tifiers definable in first-order logic, like “all” or “at least 7”, are recognizable by
acyclic finite-automata [2]; first-order logic enriched by all quantifiers of the form
“divisible by n” (e.g., “even” and “odd”) corresponds to the class of all regular
languages [3]; and that proportional quantifiers, like “most”, can be recognized by
push-down automata. Those results suggest that the comprehension of monadic
quantifiers in natural language should be relatively easy. Indeed, a corpus of
empirical studies shows that the cognitive task of recognizing logical-value of
sentences with monadic quantifiers is simple. In fact, recently the automata-
theoretic model for processing monadic quantifiers has been confronted with the
human comprehension and the results show that the model captures many im-
portant cognitive aspects of the problem (see e.g. [4, 5]). Those studies — linking
computational complexity with cognitive processing — lead to natural interest in
computational properties of polyadic quantification (multi-quantifier sentences).

In the case of polyadic quantifiers things look differently. In the logical liter-
ature one can find examples of natural language polyadic quantifiers with com-
putationally intractable model-checking problems. Branching quantifiers are an
important example. It has been observed that branching readings of natural lan-
guage sentences define NP-complete problems (see [6–8]). For instance, consider
the following sentences:

(1) Some book by every author is referred to in some essay by every critic.
(2) In my class most boys and most girls dated each other.
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Sentences with branching interpretations are definitely not a typical part of
everyday language (see e.g. [9]) but one can find less controversial examples
of semantic constructions with high computational complexity. For example,
some reciprocal sentences with quantified antecedents are NP-complete given a
plausible interpretation (see [10]), e.g. the following sentence:

(3) Most parliament members refer to each other.

Additionally, collective quantification, like in sentence (4), can also lead to com-
binatorial explosion when the verification process is considered (see [11]).

(4) Most of the PhD students played Hold’em together.

Those results show that the direct understanding of some polyadic quantifiers in
natural language might be difficult, if not impossible (see e.g. [12, 8]). However,
one might ask whether those examples are representative for natural language?

In this paper we study the most common semantic constructions that turn
simple quantifiers into complex ones: Boolean operations, iteration, cumulation
and resumption. We prove that they do not increase computational complexity
when applied to determiners. More precisely, PTIME quantifiers are closed under
the application of those lifts. Most of the natural language determiners corre-
spond to monadic quantifiers computable in polynomial time. This observation
suggests that typically polyadic quantifiers in natural language are tractable and
the intractable constructions mentioned in the previous paragraph and exten-
sively studied in logic are rather exceptional.

1.1 Mathematical Preliminaries

Generalized Quantifiers Usually in linguistic semantics quantifiers are
treated as relations between subsets of the universe. However, it is well-known,
and often used in logic, that equivalently generalized quantifiers might be defined
as classes of models (see e.g. [1]). The formal definition is as follows:

Definition 1. Let t = (n1, . . . , nk) be a k-tuple of positive integers. A general-
ized quantifier of type t is a class Q of models of a vocabulary τt = {R1, . . . , Rk},
such that Ri is ni-ary for 1 ≤ i ≤ k, and Q is closed under isomorphisms, i.e. if
M and M′ are isomorphic, then

(M ∈ Q ⇐⇒ M′ ∈ Q).

If in the above definition for all i: ni ≤ 1, then we say that a quantifier is
monadic, otherwise we call it polyadic.

Let us explain this definition further by giving a few examples. Consider a
sentence of the form Every A is B, where A stands for poets and B for people
having low self-esteem. The sentence is true if and only if A ⊆ B. Therefore,
according to the definition, the quantifier “every” is of type (1, 1) and corre-
sponds to the class of models (M,A,B) in which A ⊆ B. For the same reasons
the quantifier “an even number of” corresponds to the class of models in which
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the cardinality of A ∩ B is an even number. Finally, let us consider the quan-
tifier “most” of type (1, 1). The sentence Most As are B is true if and only
if card(A ∩B) > card(A−B) and therefore the quantifier corresponds to the
class of models where this inequality holds.

Therefore, formally speaking:

∀ = {(M,A) | A = M}.
∃ = {(M,A) | A ⊆M and A 6= ∅}.

Every = {(M,A,B) | A,B ⊆M and A ⊆ B}.
Even = {(M,A,B) | A,B ⊆M and card(A ∩B) is even}.
Most = {(M,A,B) | A,B ⊆M and card(A ∩B) > card(A−B)}.

Quantifiers in Finite Models In the paper we are interested in finite models
as arguably it is enough to model typical meanings of natural language expres-
sions (see e.g. [5] for a discussion). Finite models can be encoded as finite strings
over some vocabulary as follows. Let K be a class of finite models over some fixed
vocabulary τ . We want to treat K as a problem (language) over the vocabulary
τ . To do this we need to code τ -models as finite strings. We can assume that
the universe of a model M ∈ K consists of natural numbers: U = {1, . . . , n}. A
natural way of encoding a model M (up to isomorphism) is by listing its uni-
verse, U , and storing the interpretation of the symbols in τ by writing down
their truth-values on all tuples of objects from U .

Definition 2. Let τ = {R1, . . . , Rk} be a relational vocabulary and M a τ -
model of the following form: M = (U,RM

1 , . . . , RM
k ), where U = {1, . . . , n} is the

universe of model M and RM
i ⊆ Uni is an ni-ary relation over U , for 1 ≤ i ≤ k.

We define a binary encoding for τ -models. The code for M is a word over {0, 1,#}
of length O((card(U))c), where c is the maximal arity of the predicates in τ (or
c = 1 if there are no predicates).

The code has the followning form:

ñ#R̃M
1 # . . .#R̃M

n , where:

– ñ is the part coding the universe of the model and consists of n 1s.
– R̃M

i — the code for the ni-ary relation RM
i — is an nni-bit string whose j-th

bit is 1 iff the j-th tuple in Uni (ordered lexicographically) is in RM
i .

– # is a separating symbol.

Therefore, according to Definition 1, generalized quantifiers can be treated
as classes of such finite strings, i.e., languages. Now we can easily fit the notions
into the descriptive complexity paradigm (see e.g. [13]).

Definition 3. By the complexity of a quantifier Q we mean the computational
complexity of the corresponding class of finite models.
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For example, consider a quantifier of type (1, 2): a class of finite colored
graphs of the form M = (M,AM , RM ). Let us take a model of this form, M,
and a quantifier Q. Our computational problem is to decide whether M ∈ Q;
or equivalently, to solve the query whether M |= Q[A,R]. This can simply be
viewed as the model-checking problem for quantifiers.

In the following chapter we investigate the computational complexity of
model checking problem for polyadic quantifiers commonly occuring in natu-
ral language. But before we turn to it we need to recall some basic concepts of
the computational complexity theory (see e.g. [14] for an extensive treatment).

Complexity Classes Let f : ω −→ ω be a natural number function. TIME(f)
is the class of languages (problems) which can be recognized by a deterministic
Turing machine in time bounded by f with respect to the length of the input. In
other words, L ∈ TIME(f) if there exists a deterministic Turing machine such
that for every x ∈ L, the computation path ofM on x is shorter than f(n), where
n is the length of x. TIME(f) is called a deterministic computational complexity
class. A non-deterministic complexity class, NTIME(f), is the class of languages
L for which there exists a non-deterministic Turing machine M such that for
every x ∈ L all branches in the computation tree of M on x are bounded by
f(n) and moreoverM decides L. One way of thinking about a non-deterministic
Turing machine bounded by f is that it first guesses the right answer and then
deterministically in a time bounded by f checks if the guess is correct.

SPACE(f) is the class of languages which can be recognized by a determinis-
tic machine using at most f(n) cells of the working-tape. NSPACE(f) is defined
analogously.

Below we define some well-known complexity classes, i.e., the sets of lan-
guages of related complexity. In other words, we can say that a complexity class
is the set of problems that can be solved by a Turing machine using O(f(n)) of
time or space resource, where n is the size of the input.

Definition 4.
– LOGSPACE =

⋃
k∈ω SPACE(k log n)

– PTIME =
⋃

k∈ω TIME(nk)
– NP =

⋃
k∈ω NTIME(nk)

If L ∈ NP, then we say that L is decidable (computable, solvable) in non-
deterministic polynomial time and likewise for other complexity classes.

Moreover, we will need a concept of relativization defined via oracle machines.
An oracle machine can be described as a Turing machine with a black box, called
an oracle, which is able to decide certain decision problems in a single step. More
precisely, an oracle machine has a separate write-only oracle tape for writing
down queries for the oracle. In a single step, the oracle computes the query,
erases its input, and writes its output to the tape.

Definition 5. If B and C are complexity classes, then B relativized to C, BC ,
is the class of languages recognized by oracle machines which obey the bounds
defining B and use an oracle for problems belonging to C.
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The question whether PTIME is strictly contained in NP is the famous Mil-
lennium Problem — one of the most fundamental problems in theoretical com-
puter science, and in mathematics in general. The importance of this problem
reaches well outside the theoretical sciences as the problems in NP are usually
taken to be intractable or not efficiently computable as opposed to the problems
in P which are conceived of as efficiently solvable. In the paper we take this dis-
tinction for granted and investigate semantic constructions in natural language
from that perspective.

2 Complexity of Polyadic GQs in Language

One way to deal with polyadic quantification in natural language is to define it in
terms of monadic quantifiers using Boolean combinations and so-called polyadic
lifts. Below we recall definitions of the Boolean combinations of quantifiers and
some well-known polyadic lifts: iteration, cumulation, and resumption (see e.g.
[15]). Next we observe that they do not increase the computational complexity
of quantifiers.

2.1 Boolean Combinations

To account for complex noun phrases, like those occurring in sentences (5)–
(8), we define disjunction, conjunction, outer negation (complement) and inner
negation (post-complement) of generalized quantifiers.

(5) At least 5 or at most 10 departments can win EU grants. (disjunction)
(6) Between 100 and 200 students started in the marathon. (conjunction)
(7) Not all students passed. (outer negation)
(8) All students did not pass. (inner negation)

Definition 6. Let Q, Q′ be generalized quantifiers, both of type (n1, . . . , nk). We
define:

(Q∧Q′)M [R1, . . . , Rk] ⇐⇒ QM [R1, . . . , Rk] and Q′M [R1, . . . , Rk] (conjunction)

(Q ∨ Q′)M [R1, . . . , Rk] ⇐⇒ QM [R1, . . . , Rk] or Q′M [R1, . . . , Rk] (disjunction).

(¬Q)M [R1, . . . , Rk] ⇐⇒ not QM [R1, . . . , Rk] (complement)

(Q¬)M [R1, . . . , Rk] ⇐⇒ QM [R1, . . . , Rk−1,M −Rk] (post-complement)

2.2 Iteration

The Fregean nesting of first-order quantifiers, e.g., ∀∃, can be applied to any
generalized quantifier by means of iteration. For example, iteration may be used
to express the meaning of the following sentence in terms of its constituents.

(9) Most logicians criticized some papers.
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The above sentence is true (under one interpretation) iff there is a set containing
most logicians such that every logician from that set criticized at least one paper,
or equivalently:

It(Most,Some)[Logicians, Papers, Criticized].

Of course the sentence can have a different reading corresponding to other lifts
than iteration. We will introduce another possibility in Section 2.3. But first let
us define iteration precisely.

Definition 7. Let Q and Q′ be generalized quantifiers of type (1, 1). Let A,B
be subsets of the universe and R a binary relation over the universe. Suppressing
the universe, we will define the iteration operator as follows:

It(Q,Q′)[A,B,R] ⇐⇒ Q[A, {a | Q′[B,R(a)]}],

where R(a) = {b | R(a, b)}.

Therefore, the iteration operator produces polyadic quantifiers of type
(1, 1, 2) from two monadic quantifiers of type (1, 1). The definition can be
extended to cover iteration of monadic quantifiers with an arbitrary number of
arguments (see e.g. [1], p. 347).

2.3 Cumulation

Consider the following sentence:

(10) Eighty professors taught sixty courses at ESSLLI’08.

The analysis of this sentence by iteration of the quantifiers “eighty” and “sixty”
implies that there were 80× 60 = 4800 courses at ESSLLI. Therefore, obviously
this is not the meaning we would like to account for. This sentence presumably
means neither that each professor taught 60 courses (It(80, 60)) nor that each
course was taught by 80 professors (It(60, 80)). In fact, this sentence is an exam-
ple of so-called cumulative quantification, saying that each of the 80 professors
taught at least one from 60 course and each of the courses was taught by at
least one professor. Cumulation is easily definable in terms of iteration and the
existential quantifier as follows.

Definition 8. Let Q and Q′ be generalized quantifiers of type (1, 1). A,B are
subsets of the universe and R is a binary relation over the universe. Suppressing
the universe we will define the cumulation operator as follows:

Cum(Q,Q′)[A,B,R] ⇐⇒ It(Q,Some)[A,B,R] ∧ It(Q′,Some)[B,A,R−1].
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2.4 Resumption

The next lift we are about to introduce — resumption (vectorization) — has
found many applications in theoretical computer science (see e.g. [13]). The idea
here is to lift a monadic quantifier in such a way as to allow quantification over
tuples. This is linguistically motivated when ordinary natural language quanti-
fiers are applied to pairs of objects rather than individuals, for instance:

(11) Most twins never separate.

Moreover, resumption is useful for interpretation of certain cases of adverbial
quantification (see e.g. [1], Ch. 10.2).

Below we give a formal definition of the resumption operator.

Definition 9. Let Q be any monadic quantifier with n arguments, U a universe,
and R1, . . . , Rn ⊆ Uk for k ≥ 1. We define the resumption operator as follows:

Resk(Q)U [R1, . . . , Rn] ⇐⇒ (Q)Uk [R1, . . . , Rn].

That is, Resk(Q) is just Q applied to a universe, Uk, containing k-tuples. In
particular, Res1(Q) = Q. Clearly, one can use Res2(Most) to express the meaning
of sentence (11).

2.5 PTIME GQs are Closed under It, Cum, and Res

When studying the computational complexity of quantifiers a natural question
arises in the context of polyadic lifts. Do they increase complexity? For example,
is it possible that two tractable determiners can be turned into an intractable
quantifier?

We show that PTIME computable quantifiers are closed under Boolean com-
binations and the three lifts defined above. As we are interested in the strategies
people may use to comprehend quantifiers we show a direct construction of the
relevant procedures. In other words, we show how to construct a polynomial
model-checker for our polyadic quantifiers from PTIME Turing machines com-
puting monadic determiners.

Proposition 1 Let Q and Q′ be monadic quantifiers computable in polynomial
time with respect to the size of a universe. Then the quantifiers: (1) ¬Q; (2) Q¬;
(3) Q ∧ Q′; (4) It(Q,Q′); (5) Cum(Q,Q′); (6) Res(Q) are PTIME computable.

Proof. Let us assume that there are Turing machines M and M ′ computing
quantifiers Q and Q′, respectively. MoreoverM andM ′ work in polynomial time
with respect to any finite universe U .

(1) A Turing machine computing ¬Q is like M . The only difference is that we
change accepting states into rejecting states and vice versa. In other words,
we accept ¬Q whenever M rejects Q and reject whenever M accepts. The
working time of so-defined new Turing machine is exactly the same as
the working time of machine M . Hence, the outer negation of PTIME
quantifiers can be recognized in polynomial time.
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(2) Recall that on a given universe U we have the following equiva-
lence: (Q¬)U [R1, . . . , Rk] ⇐⇒ QU [R1, . . . , Rk−1, U − Rk]. There-
fore, for the inner negation of a quantifier it suffices to compute
U − Rk and then use the polynomial Turing machine M on the input
QU [R1, . . . , Rk−1, U −Rk].

(3) To compute Q∧Q′ we have to first compute Q using M and then Q′ using
M ′. If both machines halt in an accepting state then we accept. Otherwise,
we reject. This procedure is polynomial, because the sum of the polynomial
bounds on working time of M and M ′ is also polynomial.

(4) Recall that It(Q,Q′)[A,B,R] ⇐⇒ Q[A,A′], where A′ = {a|Q′[B,R(a)]},
for R(a) = {b|R(a, b)}. Notice that for every a from the universe, R(a) is
a monadic predicate. Now, to construct A′ in polynomial time we execute
the following procedure for every element from the universe. We initialize
A′ = ∅. Then we repeat for each a from the universe the following: Firstly
we compute R(a). Then using the polynomial machine M ′ we compute
Q′[B,R(a)]. If the machine accepts, then we add a toA′. Having constructed
A′ in polynomial time we just use the polynomial machine M to compute
Q[A,A′].

(5) Notice that cumulation is defined in terms of iteration and existential quan-
tifier (see Definition 8). Therefore, this point follows from the previous one.

(6) To compute Resk(Q) over the model M = {{1, . . . , n}, R1, . . . , Rn}
for a fixed k, we just use the machine M with the following input
ñk#R̃1# . . .#R̃n instead of ñ# . . . Recall Definition 2.

Additionally, let us give an argument that the above proposition holds
for all generalized quantifiers not only for the monadic ones. Notice that the
Boolean operations as well as iteration and cumulation are definable in first-
order logic. Recall that the model-checking problem for first-order sentences is in
LOGSPACE ⊆ PTIME (see e.g. [13]). Let A be a set of generalized quantifiers of
any type from a given complexity class C. Then the complexity of model-checking
for sentences from FO(A) is in LOGSPACEC (deterministic logarithmic space
with an oracle from C). One simply uses a LOGSPACE Turing machine to decide
the first-order sentences, evoking the oracle when a quantifier from A appears.
Therefore, the complexity of Boolean combinations, iteration and cumulation of
PTIME generalized quantifiers has to be in LOGSPACEPTIME = PTIME.

The case of the resumption operation is slightly more complicated. Resump-
tion is not definable in first-order logic for all generalized quantifiers (see [16]).
However, notice that our argument given in point (6) of the proof do not make use
of any assumption about the arity of Ri. Therefore, the same proof works for re-
sumption of polyadic quantifiers. The above considerations allow us to formulate
the following theorem which is the generalization of the previous proposition.

Theorem 1 Let Q and Q′ be generalized quantifiers computable in polynomial
time with respect to the size of a universe. Then the quantifiers: (1) ¬Q; (2) Q¬;
(3) Q ∧ Q′; (4) It(Q,Q′); (5) Cum(Q,Q′); (6) Res(Q) are PTIME computable.
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3 Conclusion

We have shown that PTIME quantifiers are closed under Boolean operations
as well as under the polyadic lifts occurring frequently in natural language. In
other words, these operations do not increase the computational complexity of
quantifiers. As we can safely assume that most of the simple determiners in nat-
ural language are PTIME computable the semantics of the polyadic quantifiers
studied above is tractable. This seems to be good news for the computational
theory of natural language processing.
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