Generalized Quantifiers
From Logic to Cognitive Science

Jakub Szymanik
Stockholm University

The 11th Szklarska Poręba Workshop
Outline

Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
1. All poets have low self-esteem.
2. Some dean danced nude on the table.
3. At least 3 grad students prepared presentations.
4. An even number of the students saw a ghost.
5. Most of the students think they are smart.
6. Less than half of the students received good marks.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.

[Diagram showing relationships between individuals]
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
Quantifiers are useful

Everyone knows everyone here.
We understand quantifiers
Let’s focus on verification

More than half of the cars are yellow.

An example of a stimulus used in the sentence verification task
How are people doing it?

- They apply some strategies/procedures/algorithms.
- Those depend on:
 - quantifiers in question;
 - visual clues;
 - level of precision subjects want to achieve;
 - ...
Meaning as algorithm

- Ability of understanding sentences.
- Capacity of recognizing their truth-values.
- Fregean tradition.
- Meaning is a procedure for finding extension in a model.
- Adopted often with psychological motivations.

Suppes, Variable-free semantics with remark on procedural extensions, 1982.
Abstract task

From a computational perspective this is just model-checking:

Input: $Q\varphi$ and M
Problem: $M \models Q\varphi$?
Answer: YES/NO

A common question

Question

How complex are different quantifier fragments of NL?
A common question

Question

How complex are different quantifier fragments of NL?

1. Expressivity \Leftarrow controlled languages;
2. Difficulty \Leftarrow cognitive science;

Illustration

fragment

Natural Language
Illustration

Natural Language
Outline

Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
Simplicity

Simple quantifiers can be computed by simple automata.

van Benthem, Essays in logical semantics, 1986
Simplicity

Simple quantifiers can be computed by simple automata.

Question

What are the minimal automata for certain quantifier types?

van Benthem, Essays in logical semantics, 1986
Example 1: Aristotelian quantifiers

- Someone cannot ski the black slope.
Example 2: Cardinal quantifiers

- There are at least 3 beers in that room.
Example 3: Parity quantifiers

- An even number of us is relaxed.
Example 4: Proportional quantifiers

▶ “Most of us like Żubrówka.”

▶ Not computable by finite-automata.
▶ We need working memory.
▶ Simple push-down automata will do.
Does it say anything about processing?

Question

Do minimal automata predict differences in verification?
Does it say anything about processing?

Question

Do minimal automata predict differences in verification?

We’ll try to convince you that the answer is positive!
Outline

Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
Predictions

- RT will increase along with the computational resources.
Predictions

- RT will increase along with the computational resources.
- Aristotelian qua. < parity qua. < proportional qua.
Predictions

- RT will increase along with the computational resources.
- Aristotelian qua. < parity qua. < proportional qua.
- Aristotelian qua. < cardinal qua. of high rank.
Participants

- 40 native Polish-speaking adults (21 female).
- Volunteers: undergraduates from the University of Warsaw.
- The mean age: 21.42 years (SD = 3.22).
- Each participant tested individually.
80 grammatically simple propositions in Polish, like:

1. Some cars are red.
2. More than 7 cars are blue.
3. An even number of cars is yellow.
4. Less than half of the cars are black.
Materials continued

More than half of the cars are yellow.

An example of a stimulus used in the first study
Procedure

- 8 different quantifiers divided into four groups.

- "all" and "some" (acyclic 2-state FA);
- "odd" and "even" (2-state FA);
- "less than 8" and "more than 7" (FA);
- "less than half" and "more than half" (PDA).

- Each quantifier was presented in 10 trials.

- The sentence true in the picture in half of the trials.

- Quantity of target items near the criterion of validation.

- Practice session followed by the experimental session.

- Each quantifier problem was given one 15.5 s event.

- Subjects were asked to decide the truth-value.
Procedure

8 different quantifiers divided into four groups.

- “all” and “some” (acyclic 2-state FA);
- “odd” and “even” (2-state FA);
- “less than 8” and “more than 7” (FA);
- “less than half” and “more than half” (PDA).

Each quantifier was presented in 10 trials.

The sentence true in the picture in half of the trials.

Quantity of target items near the criterion of validation.

Practice session followed by the experimental session.

Each quantifier problem was given one 15.5 s event.

Subjects were asked to decide the truth-value.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

Each quantifier was presented in 10 trials.
The sentence true in the picture in half of the trials.
Quantity of target items near the criterion of validation.
Practice session followed by the experimental session.
Each quantifier problem was given one 15.5 s event.
Subjects were asked to decide the truth-value.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

Each quantifier was presented in 10 trials.

The sentence true in the picture in half of the trials.

Quantity of target items near the criterion of validation.

Practice session followed by the experimental session.

Each quantifier problem was given one 15.5 s event.

Subjects were asked to decide the truth-value.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.
- The sentence true in the picture in half of the trials.
- Quantity of target items near the criterion of validation.
- Practice session followed by the experimental session.
- Each quantifier problem was given one 15.5 s event.
- Subjects were asked to decide the truth-value.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).
- Each quantifier was presented in 10 trials.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.

- The sentence true in the picture in half of the trials.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.

- The sentence true in the picture in half of the trials.

- Quantity of target items near the criterion of validation.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.

- The sentence true in the picture in half of the trials.

- Quantity of target items near the criterion of validation.

- Practice session followed by the experimental session.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).
- Each quantifier was presented in 10 trials.
- The sentence true in the picture in half of the trials.
- Quantity of target items near the criterion of validation.
- Practice session followed by the experimental session.
- Each quantifier problem was given one 15.5 s event.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.

- The sentence true in the picture in half of the trials.

- Quantity of target items near the criterion of validation.

- Practice session followed by the experimental session.

- Each quantifier problem was given one 15.5 s event.

- Subjects were asked to decide the truth-value.
Analysis of accuracy

<table>
<thead>
<tr>
<th>Quantifier group</th>
<th>Examples</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristotelian FO</td>
<td>all, some</td>
<td>99</td>
</tr>
<tr>
<td>Parity</td>
<td>odd, even</td>
<td>91</td>
</tr>
<tr>
<td>Cardinal FO</td>
<td>less than 8, more than 7</td>
<td>92</td>
</tr>
<tr>
<td>Proportional</td>
<td>less than half, more than half</td>
<td>85</td>
</tr>
</tbody>
</table>

The percentage of correct answers
Analysis of RT

RT determined by quantifier type:
- All differences significant;
- Aristotelian,
- parity,
- cardinal,
- proportional.

Analysis of RT

RT determined by quantifier type:

- All differences significant;
- Aristotelian,
- parity,
- cardinal,
- proportional.

Analysis of RT

RT determined by quantifier type:

- All differences significant;
Analysis of RT

RT determined by quantifier type:
- All differences significant;
 - Aristotelian,
 - parity,
 - cardinal,
 - proportional.

Outline

Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
McMillan et al. fMRI studies

Differences in brain activity.
Differences in brain activity.

- All quantifiers are associated with numerosity: recruit right inferior parietal cortex;
- Only higher-order activate working-memory capacity: recruit right dorsolateral prefrontal cortex;

McMillan et al., Neural basis for generalized quantifiers comprehension, 2005

Szymanik, A Note on some neuroimaging study of natural language quantifiers comprehension, Neuropsychologia, 2007
Baddeley’s model

WM unified system responsible for the performance in complex tasks.
Baddeley’s model

WM unified system responsible for the performance in complex tasks.

The model consists of:
- temporary storage units:
- a controlling system (central executive).

Baddeley, Working memory and language: an overview, 2003
Span test

To assess the working memory construct.
Subjects read sentences.
They are asked to:
- remember the final words.
- comprehend the story.
What is:
- the number of correctly memorized words?
- the degree of understanding?
- engagement of processing and storage functions.

Daneman and Carpenter, Individual differences in working memory, 1980
Span test

- To assess the working memory construct.
Span test

- To assess the working memory construct.
- Subjects read sentences.
Span test

- To assess the working memory construct.
- Subjects read sentences.
- They are asked to:
 - remember the final words.
 - comprehend the story.
Span test

- To assess the working memory construct.
- Subjects read sentences.
- They are asked to:
 - remember the final words.
 - comprehend the story.
- What is:
 - the number of correctly memorized words?
 - the degree of understanding?
Span test

- To assess the working memory construct.
- Subjects read sentences.
- They are asked to:
 - remember the final words.
 - comprehend the story.
- What is:
 - the number of correctly memorized words?
 - the degree of understanding?
- Engagement of processing and storage functions.

Daneman and Carpenter, Individual differences in working memory, 1980
‘Computational’ theory of WM

Observation

A trade-off between processing and storage functions.
‘Computational’ theory of WM

Observation

A trade-off between processing and storage functions.

Hypothesis

One cognitive resource – competition for a limited capacity.

Daneman and Merikle, Working memory and language comprehension, 1996
Experimental setup

Question
How additional memory load influences quantifier verification?
Experimental setup

Question

How additional memory load influences quantifier verification?

Combined task:

- memorize sequences of digits;
- verify quantifier sentences;
- recall digits.
Predictions

Difficulty (RT and accuracy) should decrease as follows:

- proportional quantifiers,
- numerical quantifiers of high rank,
- parity quantifiers,
- numerical quantifiers of low rank.

Additionally:

- processing of the PQs should influence storage functions;
- the effect should be stronger in more demanding situations.
Predictions

Difficulty (RT and accuracy) should decrease as follows:

- proportional quantifiers,
- numerical quantifiers of high rank,
- parity quantifiers,
- numerical quantifiers of low rank.

Additionally:

- processing of the PQs should influence storage functions;
- the effect should be stronger in more demanding situation.
Sentence verification

64 grammatically simple propositions in Polish, like:

1. More than 7 cars are blue.
2. An even number of cars is yellow.
3. Less than half of the cars are black.
Sentence verification

64 grammatically simple propositions in Polish, like:

1. More than 7 cars are blue.
2. An even number of cars is yellow.
3. Less than half of the cars are black.

▶ 8 different quantifiers divided into four groups.
Sentence verification

64 grammatically simple propositions in Polish, like:

1. More than 7 cars are blue.
2. An even number of cars is yellow.
3. Less than half of the cars are black.

- 8 different quantifiers divided into four groups.
 1. numerical quantifiers of relatively low rank, NQ4/5;
Sentence verification

64 grammatically simple propositions in Polish, like:
1. More than 7 cars are blue.
2. An even number of cars is yellow.
3. Less than half of the cars are black.

▶ 8 different quantifiers divided into four groups.
 1. numerical quantifiers of relatively low rank, NQ4/5;
 2. numerical quantifiers of relatively high rank, NQ7/8;
Sentence verification

64 grammatically simple propositions in Polish, like:

1. More than 7 cars are blue.
2. An even number of cars is yellow.
3. Less than half of the cars are black.

- 8 different quantifiers divided into four groups.
 1. numerical quantifiers of relatively low rank, NQ4/5;
 2. numerical quantifiers of relatively high rank, NQ7/8;
 3. parity quantifiers, DQ;
Sentence verification

64 grammatically simple propositions in Polish, like:

1. More than 7 cars are blue.
2. An even number of cars is yellow.
3. Less than half of the cars are black.

- 8 different quantifiers divided into four groups.
 1. numerical quantifiers of relatively low rank, NQ4/5;
 2. numerical quantifiers of relatively high rank, NQ7/8;
 3. parity quantifiers, DQ;
 4. proportional quantifiers, PQ.
Memory Task

- At the beginning of each trial a sequence of digits.
Memory Task

- At the beginning of each trial a sequence of digits.
- 2 experimental conditions:
 - 4 digits
 - 6 digits
Memory Task

- At the beginning of each trial a sequence of digits.
- 2 experimental conditions:
 - 4 digits
 - 6 digits
- After verification task: recall the string.
RT in verification task

- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

6-digit condition:
- NQ 4/5 had the shortest average RT.
- Only PQ differed between memory load conditions.
RT in verification task

RT determined by quantifier type in 4-digit:

- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

6-digit condition:
- NQ 4/5 had the shortest average RT.
- Only PQ differed between memory load conditions.
RT in verification task

RT determined by quantifier type in 4-digit:
- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

Only PQ differed between memory load conditions.
RT determined by quantifier type in 4-digit:
- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;

RT in verification task
RT in verification task

RT determined by quantifier type in 4-digit:
- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

![Graph showing RT in msec vs Digits for PQ, NQ 7/8, DQ, and NQ 4/5.]
RT in verification task

RT determined by quantifier type in 4-digit:
- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

6-digit condition:

![Graph showing RT in msec vs Digits for PQ, NQ 7/8, DQ, NQ 4/5]
RT in verification task

RT determined by quantifier type in 4-digit:
- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

6-digit condition:
- NQ 4/5 had the shortest average RT.
RT in verification task

RT determined by quantifier type in 4-digit:
- PQ solved longer than others;
- NQ 4/5 processed shorter than the rest;
- No difference between DQ and NQ 7/8.

6-digit condition:
- NQ 4/5 had the shortest average RT.

Only PQ differed between memory load conditions.
Accuracy in verification task

All quantifiers differed significantly, besides DQ and NQ 7/8. Large effect for PQ!

In 4-digit condition all quantifiers were performed worse.
Accuracy in verification task

- All quantifiers differed significantly,
- besides DQ and NQ 7/8.
Accuracy in verification task

- All quantifiers differed significantly,
- besides DQ and NQ 7/8.
- Large effect for PQ!
Accuracy in verification task

- All quantifiers differed significantly,
- besides DQ and NQ 7/8.
- Large effect for PQ!

In 4-digit condition all quantifiers were performed worse.
Memory task: recall accuracy

In 4-digit with PQ: the worst; In 6-digit: no differences.
Memory task: recall accuracy

- In 4-digit with PQ: the worst;
Memory task: recall accuracy

- In 4-digit with PQ: the worst;
- In 6-digit: no differences.
Summary

- In 4-digit automata were good predictors of difficulty.
Summary

- In 4-digit automata were good predictors of difficulty.
- Discrepancy under two memory load conditions:
 - The real differences occurred only in 4-digit condition.
 - Holding six elements in memory was probably too difficult.
 - Trade-off between processing and storage.

Szymanik & Zajenkowski, Quantifiers and working memory, LNCS, 2010
Summary

- In 4-digit automata were good predictors of difficulty.
- Discrepancy under two memory load conditions:
 - The real differences occurred only in 4-digit condition.
 - Holding six elements in memory was probably too difficult.
 - Trade-off between processing and storage.
- Number of states is a good predictor of cognitive load.

Szymanik & Zajenkowski, Quantifiers and working memory, LNCS, 2010
Outline

Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
A key property in logic and language

- Definability theory;
- Negative polarity items;
- Learnability theory;
- Reasoning;

Geurts, Reasoning with quantifiers, Cognition, 2003

Johnson-Laird, How we reason, OUP, 2008
Monotone quantifiers

Definition
Q is upward monotone if $X \subseteq Y$, then $Q(X)$ entails $Q(Y)$.

1. Every boy runs fast.
2. Every boy runs.

Definition
Q is downward monotone if $Y \subseteq X$, then $Q(X)$ entails $Q(Y)$.

1. No boy runs.
2. No boy runs fast.
Experiment

- 2 studies:
 - numerical quantifiers (“more than 7”, “less than 8”);
 - proportional quantifiers (“more than half”, “less than half”).
- upward monotone vs. downward monotone.
Average complexity and predictions

Assuming that people by default rather verify than falsify!
Average complexity and predictions

Assuming that people by default rather verify than falsify!
Cardinal quantifiers:
 ▶ “more than 7”
 ▶ needs to check only \(\lceil \frac{(n+7)}{2} \rceil \) on average.
 ▶ “less than 8”
 ▶ always all \(n \) elements.
Assuming that people by default rather verify than falsify!

Cardinal quantifiers:

- “more than 7”
 - needs to check only $\lceil \frac{(n+7)}{2} \rceil$ on average.

- “less than 8”
 - always all n elements.

- RT will increase for the downward monotone quantifier!
Average complexity and predictions

Assuming that people by default rather verify than falsify!

Cardinal quantifiers:

▶ “more than 7”
 ▶ needs to check only \(\lceil \frac{(n+7)}{2} \rceil \) on average.

▶ “less than 8”
 ▶ always all \(n \) elements.

▶ RT will increase for the downward monotone quantifier!

Proportional quantifiers:

▶ For both one has to go through all elements.

▶ No difference!
Results

Means (M) and standard deviations (SD) of RT.

<table>
<thead>
<tr>
<th>Quantifier</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 7</td>
<td>5798.12</td>
<td>1130.15</td>
</tr>
<tr>
<td>Less than 8</td>
<td>6272.98</td>
<td>1117.43</td>
</tr>
<tr>
<td>More than half</td>
<td>7415.00</td>
<td>1735.60</td>
</tr>
<tr>
<td>Less than half</td>
<td>7131.92</td>
<td>1388.50</td>
</tr>
</tbody>
</table>
Discussion

1. Predictions were confirmed.
2. Effect sizes account around 45% of variance,
3. Before it was 90%.
4. Quantifier type explains more than monotonicity.
Outline

Problem: Quantifier Verification

Computational Model

Reaction Time

Working Memory

Monotonicity

Outlook
Bigger picture

- Enrich the model:
 1. Approximate Number System;
 2. Visual clues;

Dehaene, The number sense, OUP, 1999

Pietroski et al., The meaning of ‘most’, Mind & Language, 2009
Illustration
Neurocognitive computational modeling

- Mechanism selection;
- Translate to neurocognitive setting;
- fMRI experiments.

Hackl, On the grammar and processing of proportional quantifiers, Natural Language Semantics, 2009

Dehaene & Cohen, Cultural recycling of cortical maps, Neuron, 2007
Modeling example

(a) Visual display

Verification of ‘most dots are black’

Approximate number system (ANS)
Approx. cardinalities (b and w)
Cardinality comparison (Is $b > w$?)

true

(b) Visual display

Verification of ‘most dots are black’

Sample small subsets of (≤ 4) dots
Subitize
Count ‘wins’
Cardinality comparison

true

(c) Visual display

Verification of ‘most dots are black’

Pair each white dot with a black dot
Non-paired blacks dots
Test of 1:1 correspondence (black dots left?)

true
Take home message

All models are wrong but some are useful.
Take home message

All models are wrong but some are useful.
THANK YOU!