Understanding Quantifiers in Language

Jakub Szymanik Marcin Zajenkowski

CogSci’09
Motivations

Quantifiers and Minimal Automata

The Experiment

Conclusions and Perspectives
COMPUTABILITY AND COGNITION

- A cognitive task is a computational task.
- Computational restrictions should be taken seriously:
 - Tsotsos, “Analyzing vision at the complexity level”, 1990
 - Frixione, “Tractable competence”, 2001
 - van Rooij, “The tractable cognition thesis”, 2008
 - CogSci09: Müller, van Rooij, & Wareham; Beal & Roberts.
Motivations
Quantifiers and Minimal Automata
The Experiment
Conclusions and Perspectives

QUANTIFIERS DETERMINE EXPRESSIVITY

- All poets have low self-esteem.
- Some dean danced nude on the table.
- At least 3 grad students prepared presentations.
- An even number of the students saw a ghost.
- Most of the students think they are smart.
- Less than half of the students received good marks.
Brain activity during the comprehension of quantifiers:

- All quantifiers are associated with numerosity: recruit right inferior parietal cortex;
- Only higher-order activate working-memory capacity: recruit right dorsolateral prefrontal cortex;

- McMillan et al., “Neural basis for generalized quantifiers comprehension”, 2005
- Clark & Grossman, “Number sense and quantifier interpretation”, 2007
- Szymanik and Zajenkowski, “Improving methodology of quantifier comprehension experiments”, 2009
1 Motivations

2 Quantifiers and Minimal Automata

3 The Experiment

4 Conclusions and Perspectives
Aristotelian quantifiers

“all”, “some”, “no”, and “not all”

correct correct, incorrect

q_0 incorrect q_1

All sentences in my paper are grammatically correct.
CARDINAL QUANTIFIERS

E.g. “at least 3”, “at most 7”, and “between 8 and 11”

true, false

At least 3 sentences are false.
E.g. “an even number”, “an odd number”

An even number of the sentences in my paper is false.
Proportional quantifiers

- E.g. “most”, “less than half”, “one third”
- There is no finite automaton recognizing those quantifiers.
- We need internal memory.
- A push-down automata will do.
1 Motivations

2 Quantifiers and Minimal Automata

3 The Experiment

4 Conclusions and Perspectives
PREDICTIONS

- RT will increase along with the computational resources.
Predictions

- RT will increase along with the computational resources.
- Aristotelian qua. < parity qua. < proportional qua.
PREDICTIONS

- RT will increase along with the computational resources.
- Aristotelian qua. < parity qua. < proportional qua.
- Aristotelian qua. < cardinal qua. of high rank.
Predictions

- RT will increase along with the computational resources.
- Aristotelian qua. < parity qua. < proportional qua.
- Aristotelian qua. < cardinal qua. of high rank.
- Parity qua. < cardinal qua. of high rank.
PARTICIPANTS

- 40 native Polish-speaking adults (21 female).
- Volunteers: undergraduates from the University of Warsaw.
- The mean age: 21.42 years (SD = 3.22).
- Each participant tested individually.
80 grammatically simple propositions in Polish, like:

1. Some cars are red.
2. More than 7 cars blue.
3. An even number of cars is yellow.
4. Less than half of the cars are black.
More than half of the cars are yellow.

An example of a stimulus used in the first study

Jakub Szymanik, Marcin Zajenkowski

Understanding Quantifiers in Language
8 different quantifiers divided into four groups.
8 different quantifiers divided into four groups.
- “all” and “some” (acyclic 2-state FA);
PROCEDURE

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
PROCEDURE

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).
8 different quantifiers divided into four groups.
- “all” and “some” (acyclic 2-state FA);
- “odd” and “even” (2-state FA);
- “less than 8” and “more than 7” (FA);
- “less than half” and “more than half” (PDA).
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).
- Each quantifier was presented in 10 trials.
8 different quantifiers divided into four groups.
- “all” and “some” (acyclic 2-state FA);
- “odd” and “even” (2-state FA);
- “less than 8” and “more than 7” (FA);
- “less than half” and “more than half” (PDA).

Each quantifier was presented in 10 trials.

The sentence true in the picture in half of the trials.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).
- Each quantifier was presented in 10 trials.
- The sentence true in the picture in half of the trials.
- Quantity of target items near the criterion of validation.
Procedure

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.
- The sentence true in the picture in half of the trials.
- Quantity of target items near the criterion of validation.
- Practice session followed by the experimental session.
PROCEDURE

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.
- The sentence true in the picture in half of the trials.
- **Quantity of target items near the criterion of validation.**
- Practice session followed by the experimental session.
- Each quantifier problem was given one 15.5 s event.
PROCEDURE

- 8 different quantifiers divided into four groups.
 - “all” and “some” (acyclic 2-state FA);
 - “odd” and “even” (2-state FA);
 - “less than 8” and “more than 7” (FA);
 - “less than half” and “more than half” (PDA).

- Each quantifier was presented in 10 trials.
- The sentence true in the picture in half of the trials.
- **Quantity of target items near the criterion of validation.**
- Practice session followed by the experimental session.
- Each quantifier problem was given one 15.5 s event.
- Subjects were asked to decide the truth-value.
Analysis of Accuracy

<table>
<thead>
<tr>
<th>Quantifier group</th>
<th>Examples</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristotelian FO</td>
<td>all, some</td>
<td>99</td>
</tr>
<tr>
<td>Parity</td>
<td>odd, even</td>
<td>91</td>
</tr>
<tr>
<td>Cardinal FO</td>
<td>less than 8, more than 7</td>
<td>92</td>
</tr>
<tr>
<td>Proportional</td>
<td>less than half, more than half</td>
<td>85</td>
</tr>
</tbody>
</table>

The percentage of correct answers
Analysis of RT

- Increase in RT was determined by the quantifier type ($F(2.4, 94.3) = 341.24; p < 0.001; \eta^2 = 0.90$)
- Pairwise comparisons: all four types of quantifiers differed significantly from one another.
- The mean reaction time increased as follows: Aristotelian, parity, cardinal, proportional.
COMPARISON OF REACTION TIMES

Average reaction times in each type of quantifiers

Jakub Szymanik, Marcin Zajenkowski

Understanding Quantifiers in Language
Motivations
Quantifiers and Minimal Automata
The Experiment
Conclusions and Perspectives
CONCLUSIONS

- Plausibility of the model.
- Aristotelian easier than parity:
 loops influence the complexity of cognitive tasks.
- Cardinal harder than parity:
 number of states influences hardness more than loops.
- Proportional quantifiers involve working-memory capacity.
- Humans are constrained by computational resources.
PERSPECTIVES

- Comprehension strategies?
Comprehension strategies?
Comprehension and working memory?
Perspectives

- Comprehension strategies?
- Comprehension and working memory?
- Comprehension and brain?
Thank you!