Semantic Universals

Generalized Quantifier Theory

Learnability of Quantifiers Generalized Quantifiers

Shane Steinert-Threlkeld & Jakub Szymanik University of Washington, Linguistics ILLC University of Amsterdam

Course Outline

Semantic Universals

Generalized Quantifier Theory

- (1) General introduction to generalized quantifiers
- (2) Computational representations of quantifiers
- (3) Machine learning for quantifiers 1
- (4) Machine learning for quantifiers 2
- (5) Cognitive perspective

Outline

Semantic Universals

Generalized Quantifier Theory

Informal Introduction to Generalized Quantifiers

2) Semantic Universals

Generalized Quantifier Theory

Literature

Semantic Universals

Generalized Quantifier Theory

• Westerståhl, Generalized Quantifiers, SEP.

- Peters & Westerstahl, Quantifiers in Language and Logic, OUP, 2008.
- Handbook of Logic and Language, Van Benthem & Ter Meulen (Eds.), Elsevier 2011.
- Szymanik, Quantifiers & Cognition, Studies in Linguistics & Philosophy, Springer, 2016.

Semantic Universals

Generalized Quantifier Theory

Determiners: Examples

- (1) All poets have low self-esteem.
- (2) **Some** dean danced nude on the table.
- (3) At least 3 grad students prepared presentations.
- (4) An even number of the students saw a ghost.
- (5) Most of the students think they are smart.
- (6) Less than half of the students received good marks.
- (7) Many of the soldiers have not eaten for several days.
- (8) A few of the conservatives complained about taxes.

And many more...

Determiners

Semantic Universals

Generalized Quantifier Theory

Definition

Expressions that appear to be descriptions of quantity.

Example

All, not quite all, nearly all, an awful lot, a lot, a comfortable majority, most, many, more than n, less than n, quite a few, quite a lot, several, not a lot, not many, only a few, few, a few, hardly any, one, two, three.

Semantic Universals

Generalized Quantifier Theory

Quantifiers are second-order relations

Observation

If we fix a model $\mathbb{M} = (M, A^M, B^M)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$every[A, B] = 1$$
iff $A^M \subseteq B^M$

even[A, B] = 1 iff card($A^M \cap B^M$) is even

most[A, B] = 1 iff $card(A^M \cap B^M) > card(A^M - B^M)$

Semantic Universals

Generalized Quantifier Theory

Quantifiers are second-order relations

Observation

If we fix a model $\mathbb{M} = (M, A^M, B^M)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$every[A, B] = 1$$
 iff $A^M \subseteq B^M$

even[A, B] = 1 iff card($A^M \cap B^M$) is even

most[A, B] = 1 iff $card(A^M \cap B^M) > card(A^M - B^M)$

Semantic Universals

Generalized Quantifier Theory

Quantifiers are second-order relations

Observation

If we fix a model $\mathbb{M} = (M, A^M, B^M)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$every[A, B] = 1$$
iff $A^M \subseteq B^M$

even[
$$A, B$$
] = 1 iff card($A^M \cap B^M$) is even

$$most[A, B] = 1$$
 iff $card(A^M \cap B^M) > card(A^M - B^M)$

Illustration

Semantic Universals

Generalized Quantifier Theory

Generalized Quantifiers

Semantic Universals

Generalized Quantifier Theory

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0, 1\}$ (False, True).

Example

 $every_M[A, B] = 1 \text{ iff } A \subseteq B$

 $even_M[A, B] = 1$ iff $card(A \cap B)$ is even

 $most_M[A, B] = 1$ iff $card(A \cap B) > card(A - B)$

Semantic Universals

Generalized Quantifier Theory

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0, 1\}$ (False, True).

Example

 $every_M[A, B] = 1$ iff $A \subseteq B$

 $even_M[A, B] = 1$ iff $card(A \cap B)$ is even

 $most_M[A, B] = 1$ iff $card(A \cap B) > card(A - B)$

Semantic Universals

Generalized Quantifier Theory

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0, 1\}$ (False, True).

Example

$$every_M[A, B] = 1$$
iff $A \subseteq B$

 $even_M[A, B] = 1$ iff $card(A \cap B)$ is even

 $most_M[A, B] = 1$ iff $card(A \cap B) > card(A - B)$

Space of GQs

Semantic Universals

Generalized Quantifier Theory

Q is a function from M into a function from pairs of subsets of M into $\{0, 1\}$.

- If card(M) = n, then there are $2^{2^{2n}}$ GQs.
- For n = 2 it gives 65,536 possibilities.

Question

Which of those are realized in natural language as determiners?

Space of GQs

Semantic Universals

Generalized Quantifier Theory

Q is a function from M into a function from pairs of subsets of M into $\{0, 1\}$.

- If card(M) = n, then there are $2^{2^{2n}}$ GQs.
- For n = 2 it gives 65,536 possibilities.

Question

Which of those are realized in natural language as determiners?

Outline

Semantic Universals •0000000

2 Semantic Universals

Semantic Universals

Generalized Quantifier Theory

Isomorphism closure (ISOM) If $(M, A, B) \cong (M', A', B')$, then $Q_M(A, B) \Leftrightarrow Q_{M'}(A', B')$

Topic neutrality

Semantic Universals

Generalized Quantifier Theory

$\begin{array}{c} \mbox{Extensionality} \\ \mbox{(EXT) If } {\it M} \subseteq {\it M}', \mbox{ then } {\it Q}_{M}({\it A}, {\it B}) \Leftrightarrow {\it Q}_{M'}({\it A}, {\it B}) \end{array}$

$\begin{array}{l} \textbf{Conservativity} \\ (\text{CONS}) \ \textbf{Q}_{\textbf{M}}(A,B) \Leftrightarrow \textbf{Q}_{\textbf{M}}(A,A \cap B) \end{array}$

Semantic Universals

Generalized Quantifier Theory

Monotonicity

Semantic Universals

Generalized Quantifier Theory

- \uparrow **MON** $Q_M[A, B]$ and $A \subseteq A' \subseteq M$ then $Q_M[A', B]$.
- \downarrow **MON** $Q_M[A, B]$ and $A' \subseteq A \subseteq M$ then $Q_M[A', B]$.
- **MON** \uparrow Q_{*M*}[*A*, *B*] and *B* \subseteq *B*' \subseteq *M* then Q_{*M*}[*A*, *B*'].
- **MON** \downarrow Q_{*M*}[*A*, *B*] and *B*' \subseteq *B* \subseteq *M* then Q_{*M*}[*A*, *B*'].

Semantic Universals

Generalized Quantifier Theory

Inference test

- (1) Some boy is dirty.
- (2) Some child is dirty.
- (1) All children are dirty.
- (2) All boys are dirty.
- (1) All boys are muddy.
- (2) All boys are dirty.
- (1) No boy is dirty.
- (2) No boy is muddy.
- (1) Exactly five children are dirty.
- (2) Exactly five boys are dirty.

The study of such 'easy' inferences on surface forms goes by the name 'natural logic' which is a thriving area of research

Monotonicity Universal

Semantic Universals

Generalized Quantifier Theory

Monotonicity Universal (Barwise & Cooper 1981)

All simple determiners are monotone or conjunctions of monotone determiners

Research questions

Semantic Universals

Generalized Quantifier Theory

• Do all NL determiners satisfy ISOM, EXT, MON, and CONS?

- Only? Every third? An even number of?
- Do all simple NL determiners satisfy ISOM, EXT and CONS?

Research questions

Semantic Universals

Generalized Quantifier Theory

• Do all NL determiners satisfy ISOM, EXT, MON, and CONS?

• Only? Every third? An even number of?

• Do all simple NL determiners satisfy ISOM, EXT and CONS?

Research questions

Semantic Universals

Generalized Quantifier Theory

- Do all NL determiners satisfy ISOM, EXT, MON, and CONS?
- Only? Every third? An even number of?
- Do all simple NL determiners satisfy ISOM, EXT and CONS?

Outline

Generalized Quantifier Theory •00000000000

3 Generalized Quantifier Theory

General definition

Semantic Universals

Generalized Quantifier Theory

Definition

A monadic generalized quantifier of type (1,1) is a class Q of structures of the form $M = (U, A_1, A_2)$, where $A_1, A_2 \subseteq U$. Additionally, Q is closed under isomorphism.

Examples

Semantic Universals

Generalized Quantifier Theory

every = { $(M, A, B) \mid A, B \subseteq M \text{ and } A \subseteq B$ }.

some = { $(M, A, B) \mid A, B \subseteq M \text{ and } A \cap B \neq \emptyset$ }.

more than $k = \{(M, A, B) \mid A, B \subseteq M \text{ and } card(A \cap B) > k\}.$

even = { $(M, A, B) \mid A, B \subseteq M$ and card $(A \cap B)$ is even}.

Examples

Semantic Universals

Generalized Quantifier Theory

every = { $(M, A, B) \mid A, B \subseteq M \text{ and } A \subseteq B$ }.

some = { $(M, A, B) \mid A, B \subseteq M \text{ and } A \cap B \neq \emptyset$ }.

more than $k = \{(M, A, B) \mid A, B \subseteq M \text{ and } card(A \cap B) > k\}.$

even = { $(M, A, B) \mid A, B \subseteq M$ and card $(A \cap B)$ is even}.

Examples

Semantic Universals

Generalized Quantifier Theory

every = {
$$(M, A, B) \mid A, B \subseteq M \text{ and } A \subseteq B$$
}.

some = {
$$(M, A, B) \mid A, B \subseteq M \text{ and } A \cap B \neq \emptyset$$
}.

more than $k = \{(M, A, B) \mid A, B \subseteq M \text{ and } card(A \cap B) > k\}.$

even = { $(M, A, B) \mid A, B \subseteq M$ and card $(A \cap B)$ is even}.

Examples

Semantic Universals

Generalized Quantifier Theory

every = {
$$(M, A, B) \mid A, B \subseteq M \text{ and } A \subseteq B$$
}.

some = {
$$(M, A, B) \mid A, B \subseteq M \text{ and } A \cap B \neq \emptyset$$
}.

more than $k = \{(M, A, B) \mid A, B \subseteq M \text{ and } card(A \cap B) > k\}.$

even = { $(M, A, B) \mid A, B \subseteq M$ and card $(A \cap B)$ is even}.

Examples

Semantic Universals

Generalized Quantifier Theory

every = {
$$(M, A, B) \mid A, B \subseteq M \text{ and } A \subseteq B$$
}.

some = {
$$(M, A, B) \mid A, B \subseteq M \text{ and } A \cap B \neq \emptyset$$
}.

more than $k = \{(M, A, B) \mid A, B \subseteq M \text{ and } card(A \cap B) > k\}.$

even = { $(M, A, B) \mid A, B \subseteq M$ and card $(A \cap B)$ is even}.

Boolean combinations

- (1) At least 5 or at most 10 departments can win EU grants. (disjunction)
- (2) Between 100 and 200 students started in the marathon. (conjunction)
- (3) Not all students passed. (outer negation)
- (4) All students did not pass. (inner negation)

Definition

 $\begin{array}{ll} (\mathbb{Q} \wedge \mathbb{Q}')_{M}[A,B] \iff \mathbb{Q}_{M}[A,B] \text{ and } \mathbb{Q}'_{M}[A,B] \text{ (conjunction)} \\ (\mathbb{Q} \vee \mathbb{Q}')_{M}[A,B] \iff \mathbb{Q}_{M}[A,B] \text{ or } \mathbb{Q}'_{M}[A,B] \text{ (disjunction)}. \\ (\neg \mathbb{Q})_{M}[A,B] \iff \text{ not } \mathbb{Q}_{M}[A,B] \text{ (complement)} \\ (\mathbb{Q} \neg)_{M}[A,B] \iff \mathbb{Q}_{M}[A,M-B] \text{ (post-complement)} \end{array}$

Semantic Universals

Generalized Quantifier Theory

Monotonicity interacts with negation

Theorem
Q <i>is MON</i> ↑
(1) iff $\neg Q$ is MON \downarrow .
(2) iff $Q\neg$ is MON \downarrow .
Q <i>is</i> ↑ <i>MON</i>
(1) iff $\neg Q$ is $\downarrow MON$.
(2) iff $Q\neg$ is $\uparrow MON$.
Similarly for the downward monotone case.

Square of opposition

- some, \neg some = no, some \neg = not all, \neg some \neg = all.
- some is ↑MON↑.
- Therefore, no is $\downarrow MON \downarrow$, not all is $\uparrow MON \downarrow$, and all is $\downarrow MON \uparrow$.

Definability

Semantic Universals

Generalized Quantifier Theory

Definition

Let Q be a generalized quantifier and \mathcal{L} a logic. We say that the quantifier Q is *definable* in \mathcal{L} if there is a sentence $\varphi \in \mathcal{L}$ such that for any \mathbb{M} :

 $\mathbb{M} \models \varphi \text{ iff } \mathsf{Q}_{\mathsf{M}}[\mathsf{A}, \mathsf{B}].$

Elementary GQs

Semantic Universals

Generalized Quantifier Theory

Some GQs, like $\exists^{\leq 3}, \exists^{=3}$, and $\exists^{\geq 3}$, are expressible in FO (and therefore all boolean combinations thereof).

Example

some $x [A(x), B(x)] \iff \exists x [A(x) \land B(x)] (\iff \mathbb{M} \in Q)$ less than two $x [A(x), B(x)] \iff \exists x \exists y [[A(x) \land B(x)] \land [A(y) \land B(y)] \rightarrow x = y]$

Non-elementary GQs

Semantic Universals

Generalized Quantifier Theory

Theorem

The quantifiers 'there exists (in)finitely many', most and even are not first-order definable.

We can use higher-order logics:

Example

In $\mathbb{M} = (M, A^M, B^M)$ the sentence

most x [A(x), B(x)]

is true if and only if the following condition holds:

 $\exists f: (A^M - B^M) \longrightarrow (A^M \cap B^M)$ such that f is injective but not surjective.

Exercise. Write this definition of most as a formula in second-order logic with only the monadic predicate variables *A* and *B* free.

Non-elementary GQs

Semantic Universals

Generalized Quantifier Theory

Theorem

The quantifiers 'there exists (in)finitely many', most and even are not first-order definable.

We can use higher-order logics:

Example

In $\mathbb{M} = (M, A^M, B^M)$ the sentence

most x [A(x), B(x)]

is true if and only if the following condition holds:

 $\exists f: (A^M - B^M) \longrightarrow (A^M \cap B^M)$ such that f is injective but not surjective.

Exercise. Write this definition of most as a formula in second-order logic with only the monadic predicate variables *A* and *B* free.

Non-elementary GQs

Semantic Universals

Generalized Quantifier Theory

Theorem

The quantifiers 'there exists (in)finitely many', most and even are not first-order definable.

We can use higher-order logics:

Example

In $\mathbb{M} = (M, A^M, B^M)$ the sentence

most x [A(x), B(x)]

is true if and only if the following condition holds:

 $\exists f: (A^M - B^M) \longrightarrow (A^M \cap B^M)$ such that f is injective but not surjective.

Exercise. Write this definition of most as a formula in second-order logic with only the monadic predicate variables *A* and *B* free.

Semantic Universals

Generalized Quantifier Theory

How to Prove Undefinability?

Definition (Ehrenfeucht-Fraïsseé games for model-comparison)

Given two structures A and B, and n.

We define a game between Spoiler and Duplicator:

- 1. Spoiler, picks either a member $a_1 \in \mathcal{A}$ or $b_1 \in \mathcal{B}$
- 2. Duplicator responds with picking a member from other structure
- 3. Spoiler and Duplicator continue to pick members for n 1 more steps
- 4. Duplicator wins if the established mapping is a partial isomorphism

See also Six Lectures Ehrenfeucht-FraÃ-ssé games

Semantic Universals

Generalized Quantifier Theory

How to Prove Undefinability

Lemma (Ehrenfeucht-Fraïssé)

Q is FO-definable iff $\exists k \ s.t.$

$$\mathcal{M} \equiv_k \mathcal{M}' \Rightarrow \mathcal{M} \in \mathcal{Q} \text{ iff } \mathcal{M}' \in \mathcal{Q}$$

where \equiv_k means Dup has k-round winning strategy in E-F game.

In our case:

$$A \sim_k B \Leftrightarrow |A| = |B| = n < k \text{ or } |A|, |B| \ge k$$

and $\mathcal{M} \equiv_k \mathcal{M}'$ iff $A \cap B, A \setminus B, B \setminus A, M \setminus (B \cup A)$ all bear \sim_k to their primed counterparts.

Semantic Universals

Generalized Quantifier Theory

How to Prove Undefinability

Lemma (Ehrenfeucht-Fraïssé)

Q is FO-definable iff $\exists k \ s.t.$

$$\mathcal{M} \equiv_k \mathcal{M}' \Rightarrow \mathcal{M} \in \mathcal{Q} \text{ iff } \mathcal{M}' \in \mathcal{Q}$$

where \equiv_k means Dup has k-round winning strategy in E-F game.

In our case:

$$A \sim_k B \Leftrightarrow |A| = |B| = n < k \text{ or } |A|, |B| \ge k$$

and $\mathcal{M} \equiv_k \mathcal{M}'$ iff $A \cap B, A \setminus B, B \setminus A, M \setminus (B \cup A)$ all bear \sim_k to their primed counterparts.

Example: most

Semantic Universals

Generalized Quantifier Theory

Theorem

most is not FO-definable

Proof.

Fix k. Let \mathbb{M}_1 and \mathbb{M}_2 be two models such that

• $|A_1 \cap B_1| = k + 1, |A_1 \setminus B_1| = k$

• $|A_2 \cap B_2| = k$, $|A_2 \setminus B_2| = k$

We have that $\mathbb{M}_1 \equiv_k \mathbb{M}_2$ but $\mathbb{M}_1 \in \text{most}$ and $\mathbb{M}_2 \notin \text{most}$.