Learnability of Quantifiers

Generalized Quantifiers

Shane Steinert-Threlkeld \& Jakub Szymanik University of Washington, Linguistics

ILLC
University of Amsterdam

Course Outline

(1) General introduction to generalized quantifiers
(2) Computational representations of quantifiers
(3) Machine learning for quantifiers 1
(4) Machine learning for quantifiers 2
(5) Cognitive perspective

Outline

(1) Informal Introduction to Generalized Quantifiers

2 Semantic Universals

(3) Generalized Quantifier Theory

Literature

- Westerståhl, Generalized Quantifiers, SEP.
- Peters \& Westerståhl, Quantifiers in Language and Logic, OUP, 2008.
- Handbook of Logic and Language, Van Benthem \& Ter Meulen (Eds.), Elsevier 2011.
- Szymanik, Quantifiers \& Cognition, Studies in Linguistics \& Philosophy, Springer, 2016.

Determiners: Examples

(1) All poets have low self-esteem.
(2) Some dean danced nude on the table.
(3) At least 3 grad students prepared presentations.
(4) An even number of the students saw a ghost.
(5) Most of the students think they are smart.
(6) Less than half of the students received good marks.
(7) Many of the soldiers have not eaten for several days.
(8) A few of the conservatives complained about taxes.

And many more...

Determiners

Definition

Expressions that appear to be descriptions of quantity.

Example

All, not quite all, nearly all, an awful lot, a lot, a comfortable majority, most, many, more than n, less than n, quite a few, quite a lot, several, not a lot, not many, only a few, few, a few, hardly any, one, two, three.

Quantifiers are second-order relations

Observation

If we fix a model $M=\left(M, A^{M}, B^{M}\right)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$
\text { every }[A, B]=1 \text { iff } A^{M} \subseteq B^{M}
$$

$$
\operatorname{even}[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right) \text { is even }
$$

Quantifiers are second-order relations

Observation

If we fix a model $M=\left(M, A^{M}, B^{M}\right)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$
\begin{gathered}
\text { every }[A, B]=1 \text { iff } A^{M} \subseteq B^{M} \\
\text { even }[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right) \text { is even }
\end{gathered}
$$

Quantifiers are second-order relations

Observation

If we fix a model $M=\left(M, A^{M}, B^{M}\right)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$
\begin{gathered}
\text { every }[A, B]=1 \text { iff } A^{M} \subseteq B^{M} \\
\text { even }[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right) \text { is even } \\
\operatorname{most}[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right)>\operatorname{card}\left(A^{M}-B^{M}\right)
\end{gathered}
$$

Illustration

Generalized Quantifiers

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0,1\}$ (False, True).

Example

$$
\text { every }_{M}[A, B]=1 \text { iff } A \subseteq B
$$

$\operatorname{even}_{M}[A, B]=1$ iff $\operatorname{card}(A \cap B)$ is even
$\operatorname{most}_{M}[A, B]=1$ iff $\operatorname{card}(A \cap B)>\operatorname{card}(A-B)$

Generalized Quantifiers

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0,1\}$ (False, True).

Example

$$
\text { every }_{M}[A, B]=1 \text { iff } A \subseteq B
$$

$\operatorname{even}_{M}[A, B]=1 \mathrm{iff} \operatorname{card}(A \cap B)$ is even

$$
\operatorname{most}_{M}[A, B]=1 \mathrm{iff} \operatorname{card}(A \cap B)>\operatorname{card}(A-B)
$$

Generalized Quantifiers

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0,1\}$ (False, True).

Example

$$
\begin{gathered}
\text { every }_{M}[A, B]=1 \text { iff } A \subseteq B \\
\text { even }_{M}[A, B]=1 \text { iff } \operatorname{card}(A \cap B) \text { is even } \\
\operatorname{most}_{M}[A, B]=1 \text { iff } \operatorname{card}(A \cap B)>\operatorname{card}(A-B)
\end{gathered}
$$

Space of GQs

Q is a function from M into a function from pairs of subsets of M into $\{0,1\}$.

- If $\operatorname{card}(M)=n$, then there are $2^{2^{2 n}} \mathrm{GQs}$.
- For $n=2$ it gives 65,536 possibilities.

Question
Which of those are realized in natural language as determiners?

Space of GQs

Q is a function from M into a function from pairs of subsets of M into $\{0,1\}$.

- If $\operatorname{card}(M)=n$, then there are $2^{2^{2 n}} \mathrm{GQs}$.
- For $n=2$ it gives 65,536 possibilities.

Question

Which of those are realized in natural language as determiners?

Outline

(1) Informal Introduction to Generalized Quantifiers

2 Semantic Universals
(3) Generalized Quantifier Theory

Isomorphism closure

 (ISOM) If $(M, A, B) \cong\left(M^{\prime}, A^{\prime}, B^{\prime}\right)$, then $\mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathrm{M}^{\prime}}\left(A^{\prime}, B^{\prime}\right)$

Topic neutrality

Extensionality

(EXT) If $M \subseteq M^{\prime}$, then $\mathrm{Q}_{\mathbf{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathbf{M}^{\prime}}(A, B)$

Conservativity $(C O N S) \mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathrm{M}}(A, A \cap B)$

Monotonicity

\uparrow MON $\mathrm{Q}_{M}[A, B]$ and $A \subseteq A^{\prime} \subseteq M$ then $\mathrm{Q}_{M}\left[A^{\prime}, B\right]$.
\downarrow MON $\mathrm{Q}_{M}[A, B]$ and $A^{\prime} \subseteq A \subseteq M$ then $\mathrm{Q}_{M}\left[A^{\prime}, B\right]$.
MON $\uparrow \mathrm{Q}_{M}[A, B]$ and $B \subseteq B^{\prime} \subseteq M$ then $\mathrm{Q}_{M}\left[A, B^{\prime}\right]$.
MON $\downarrow \mathrm{Q}_{M}[A, B]$ and $B^{\prime} \subseteq B \subseteq M$ then $\mathrm{Q}_{M}\left[A, B^{\prime}\right]$.

Inference test

(1) Some boy is dirty.
(2) Some child is dirty.
(1) All children are dirty.
(2) All boys are dirty.
(1) All boys are muddy.
(2) All boys are dirty.
(1) No boy is dirty.
(2) No boy is muddy.
(1) Exactly five children are dirty.
(2) Exactly five boys are dirty.

The study of such 'easy' inferences on surface forms goes by the name 'natural logic' which is a thriving area of research

Monotonicity Universal

Monotonicity Universal (Barwise \& Cooper 1981)
All simple determiners are monotone or conjunctions of monotone determiners

Research questions

- Do all NL determiners satisfy ISOM, EXT, MON, and CONS?
- Only? Every third? An even number of?
- Do all simple NL determiners satisfy ISOM, EXT and CONS?

Research questions

- Do all NL determiners satisfy ISOM, EXT, MON, and CONS?
- Only? Every third? An even number of?
- Do all simple NL determiners satisfy ISOM, EXT and CONS?

Research questions

- Do all NL determiners satisfy ISOM, EXT, MON, and CONS?
- Only? Every third? An even number of?
- Do all simple NL determiners satisfy ISOM, EXT and CONS?

Outline

(1) Informal Introduction to Generalized Quantifiers

(2) Semantic Universals

(3) Generalized Quantifier Theory

General definition

Definition
A monadic generalized quantifier of type $(1,1)$ is a class Q of structures of the form $M=\left(U, A_{1}, A_{2}\right)$, where $A_{1}, A_{2} \subseteq U$. Additionally, Q is closed under isomorphism.

Examples

$$
\text { every }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \subseteq B\} .
$$

$$
\text { some }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \cap B \neq \emptyset\} .
$$

\square

$$
\text { even }=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B) \text { is even }\} .
$$

$$
\text { most }=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B)>\operatorname{card}(A-B)\}
$$

Examples

$$
\begin{gathered}
\text { every }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \subseteq B\} . \\
\text { some }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \cap B \neq \emptyset\} .
\end{gathered}
$$

more than $\mathrm{k}=\{(M, A, B) \mid A, B \subseteq M$ and $\operatorname{card}(A \cap B)>k\}$. even $=\{(M, A, B) \mid A, B \subseteq M$ and $\operatorname{card}(A \cap B)$ is even $\}$
most $=\{(M, A, B) \mid A, B \subseteq M$ and $\operatorname{card}(A \cap B)>\operatorname{card}(A-B)\}$

Examples

$$
\begin{gathered}
\text { every }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \subseteq B\} . \\
\text { some }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \cap B \neq \emptyset\} . \\
\text { more than } \mathrm{k}=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B)>k\} . \\
\text { even }=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B) \text { is even }\} .
\end{gathered}
$$

most $=\{(M, A, B) \mid A, B \subseteq M$ and $\operatorname{card}(A \cap B)>\operatorname{card}(A-B)\}$

Examples

$$
\begin{gathered}
\text { every }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \subseteq B\} . \\
\text { some }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \cap B \neq \emptyset\} . \\
\text { more than } \mathrm{k}=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B)>k\} . \\
\text { even }=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B) \text { is even }\} .
\end{gathered}
$$

Examples

$$
\begin{gathered}
\text { every }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \subseteq B\} \\
\text { some }=\{(M, A, B) \mid A, B \subseteq M \text { and } A \cap B \neq \emptyset\} . \\
\text { more than } \mathrm{k}=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B)>k\} . \\
\text { even }=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B) \text { is even }\} . \\
\text { most }=\{(M, A, B) \mid A, B \subseteq M \text { and } \operatorname{card}(A \cap B)>\operatorname{card}(A-B)\}
\end{gathered}
$$

Boolean combinations

(1) At least 5 or at most 10 departments can win EU grants. (disjunction)
(2) Between 100 and 200 students started in the marathon. (conjunction)
(3) Not all students passed. (outer negation)
(4) All students did not pass. (inner negation)

Definition

$\left(\mathrm{Q} \wedge \mathrm{Q}^{\prime}\right)_{M}[A, B] \Longleftrightarrow \mathrm{Q}_{M}[A, B]$ and $\mathrm{Q}_{M}^{\prime}[A, B]$ (conjunction)
$\left(\mathrm{Q} \vee \mathrm{Q}^{\prime}\right)_{M}[A, B] \Longleftrightarrow \mathrm{Q}_{M}[A, B]$ or $\mathrm{Q}_{M}^{\prime}[A, B]$ (disjunction).
$(\neg \mathrm{Q})_{M}[A, B] \Longleftrightarrow \operatorname{not} Q_{M}[A, B]$ (complement)
$(\mathrm{Q} \neg)_{M}[A, B] \Longleftrightarrow Q_{M}[A, M-B]$ (post-complement)

Monotonicity interacts with negation

Theorem
Q is $\mathrm{MON} \uparrow$
(1) iff $\neg Q$ is $M O N \downarrow$.
(2) iff $\mathrm{Q} \rightharpoondown$ is $M O N \downarrow$.

Q is $\uparrow \mathrm{MON}$
(1) iff $\neg \mathrm{Q}$ is $\downarrow M O N$.
(2) iff $Q \neg$ is $\uparrow M O N$.

Similarly for the downward monotone case.

Square of opposition

- some, \neg some $=$ no, some $\neg=$ not all, \neg some $\neg=$ all.
- some is $\uparrow \mathrm{MON} \uparrow$.
- Therefore, no is $\downarrow \mathrm{MON} \downarrow$, not all is $\uparrow \mathrm{MON} \downarrow$, and all is $\downarrow \mathrm{MON} \uparrow$.

Definability

Definition

Let Q be a generalized quantifier and \mathcal{L} a logic. We say that the quantifier Q is definable in \mathcal{L} if there is a sentence $\varphi \in \mathcal{L}$ such that for any \mathbb{M} :
$M \models \varphi$ iff $Q_{M}[A, B]$.

Elementary GQs

Some GQs, like $\exists^{\leq 3}$, $\exists^{=3}$, and $\exists^{\geq 3}$, are expressible in FO (and therefore all boolean combinations thereof).

Example

```
    some x[A(x),B(x)]\Longleftrightarrow\existsx[A(x)\wedgeB(x)](\LongleftrightarrowM\inQ)
less than two }x[A(x),B(x)]\Longleftrightarrow\existsx\existsy[[A(x)\wedgeB(x)]^[A(y)\wedgeB(y)]->x=y
```


Non-elementary GQs

Theorem
The quantifiers 'there exists (in)finitely many', most and even are not first-order definable.

We can use higher-order logics:

Example

$\ln M=\left(M, L^{M}, B^{M}\right)$ the sentence

$$
\text { most } x[A(x), B(x)]
$$

is true if and only if the following condition holds:

> If: $\left(A^{M}-D^{M}\right) \longrightarrow\left(A^{M} \cap D^{M}\right)$ such that f is injective but not surjective.

> Exercise. Write this definition of most as a formula in second-order logic with only the monadic predicate variables A and B free.

Non-elementary GQs

Theorem
The quantifiers 'there exists (in)finitely many', most and even are not first-order definable.

We can use higher-order logics:
Example
In $M=\left(M, A^{M}, B^{M}\right)$ the sentence
is true if and only if the following condition holds:

Non-elementary GQs

Theorem

The quantifiers 'there exists (in)finitely many', most and even are not first-order definable.

We can use higher-order logics:

Example

$\ln M=\left(M, A^{M}, B^{M}\right)$ the sentence

$$
\operatorname{most} x[A(x), B(x)]
$$

is true if and only if the following condition holds:
$\exists f:\left(A^{M}-B^{M}\right) \longrightarrow\left(A^{M} \cap B^{M}\right)$ such that f is injective but not surjective.
Exercise. Write this definition of most as a formula in second-order logic with only the monadic predicate variables A and B free.

How to Prove Undefinability?

Definition (Ehrenfeucht-Fraïsseé games for model-comparison)
Given two structures \mathcal{A} and \mathcal{B}, and n.
We define a game between Spoiler and Duplicator:

1. Spoiler, picks either a member $a_{1} \in \mathcal{A}$ or $b_{1} \in \mathcal{B}$
2. Duplicator responds with picking a member from other structure
3. Spoiler and Duplicator continue to pick members for $n-1$ more steps
4. Duplicator wins if the established mapping is a partial isomorphism

See also Six Lectures Ehrenfeucht-FraÃ-ssÃ® games

How to Prove Undefinability

Lemma (Ehrenfeucht-Fraïssé)

Q is FO-definable iff $\exists k$ s.t.

$$
\mathcal{M} \equiv_{k} \mathcal{M}^{\prime} \Rightarrow \mathcal{M} \in Q \text { iff } \mathcal{M}^{\prime} \in Q
$$

where \equiv_{k} means Dup has k-round winning strategy in E-F game.
In our case:
and $\mathcal{M} \equiv{ }_{k} \mathcal{M}^{\prime}$ iff $A \cap B, A \backslash B, B \backslash A, M \backslash(B \cup A)$ all bear \sim_{k} to their primed counterparts.

How to Prove Undefinability

Lemma (Ehrenfeucht-Fraïssé)

Q is $F O$-definable iff $\exists k$ s.t.

$$
\mathcal{M} \equiv_{k} \mathcal{M}^{\prime} \Rightarrow \mathcal{M} \in Q \text { iff } \mathcal{M}^{\prime} \in Q
$$

where \equiv_{k} means Dup has k-round winning strategy in E-F game.
In our case:

$$
A \sim_{k} B \Leftrightarrow|A|=|B|=n<k \text { or }|A|,|B| \geq k
$$

and $\mathcal{M} \equiv{ }_{k} \mathcal{M}^{\prime}$ iff $A \cap B, A \backslash B, B \backslash A, M \backslash(B \cup A)$ all bear \sim_{k} to their primed counterparts.

Example: most

Theorem

most is not FO-definable

Proof.

Fix k. Let M_{1} and \mathbb{M}_{2} be two models such that

- $\left|A_{1} \cap B_{1}\right|=k+1,\left|A_{1} \backslash B_{1}\right|=k$
- $\left|A_{2} \cap B_{2}\right|=k,\left|A_{2} \backslash B_{2}\right|=k$

We have that $\mathbb{M}_{1} \equiv_{k} \mathbb{M}_{2}$ but $\mathbb{M}_{1} \in$ most and $\mathbb{M}_{2} \notin$ most.

