
Recap Universals and representations Quantifiers as Computational Problems

Learnability of Quantifiers
Computational Representations of Quantifiers

Shane Steinert-Threlkeld & Jakub Szymanik
University of Washington, Linguistics

ILLC
University of Amsterdam

August 6, 2019

1



Recap Universals and representations Quantifiers as Computational Problems

Outline

1 Recap

2 Universals and representations

3 Quantifiers as Computational Problems
Regular Languages and Finite Automata
Context-Free Languages and Quantifiers

2



Recap Universals and representations Quantifiers as Computational Problems

Recap

Yesterday:

Basic examples of generalized quantifiers

Constraints on GQs: ISOM, EXT, CONS, MON

Definability

Today:

We will start by exploring consequences of the proposed universals

We will give computational representations of GQs by looking at
machines accepting corresponding formal languages

Definability results of the kind we saw yesterday will correspond to the
Chomsky Hierarchy

3



Recap Universals and representations Quantifiers as Computational Problems

Recap

Yesterday:

Basic examples of generalized quantifiers

Constraints on GQs: ISOM, EXT, CONS, MON

Definability

Today:

We will start by exploring consequences of the proposed universals

We will give computational representations of GQs by looking at
machines accepting corresponding formal languages

Definability results of the kind we saw yesterday will correspond to the
Chomsky Hierarchy

3



Recap Universals and representations Quantifiers as Computational Problems

Outline

1 Recap

2 Universals and representations

3 Quantifiers as Computational Problems
Regular Languages and Finite Automata
Context-Free Languages and Quantifiers

4



Recap Universals and representations Quantifiers as Computational Problems

Recall...

ISOM If (M,A,B) ∼= (M ′,A′,B′), then QM(A,B)⇔ QM′(A′,B′)

EXT If M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

CONS QM(A,B)⇔ QM(A,A ∩ B)
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Consequences of Constraints

Theorem

A quantifier Q satisfies CONS and EXT if and only if for every M,M ′ and
A,B ⊆ M, A′,B′ ⊆ M ′, if |A− B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|, then
QMAB ⇔ QM′A′B′.
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GQs as Binary Relations on N

In other words, quantifiers that satisfy CONS and EXT can be summarized
succinctly as binary relations on natural numbers. Given Q we define:

Qcxy ⇔ ∃ (M,A,B) QMAB and |A− B| = x , |A ∩ B| = y .

Standard generalized quantifiers can thus be seen as particular simple cases.

every c xy ⇔ x = 0

somec xy ⇔ y > 0

at least threec xy ⇔ y ≥ 3

mostc xy ⇔ y > x

an even number of c xy ⇔ y = 2n for some n ∈ N
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Number triangle representation

Let Q be a CE-quantifier. Then define relation: Q(k ,m) iff there are M and
A,B ⊆ M such that card(A− B) = k , card(A ∩ B) = m, and QM (A,B).

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

... ...
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Example 1: which?

-

- +

- + +

- + + +

- + + + +

... ...
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Example 2: which?

—

– –

– – +
– – + +

– – + + +

. . .
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Example 3: which?

—

+ +

+ + –

+ + – –

+ + – – –

. . .
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Example 4: which?

—

+ +

+ + +

+ + + –

+ + + – –

. . .
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Example 5: which?

—
+ –

+ – +
+ – + –

+ – + – +

. . .
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Example 6: which?

—
+ –

+ – –
+ – – +

+ – – + –

. . .
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Example 7: which?

—
– +

– – +
– – + +

– – – + +
– – – + + +

– – – – + + +
. . .
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Example 8: which?

—
– +

– + +
– – + +

– – + + +
– – + + + +

– – – + + + +
. . .
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↑MON

-

- +

- + +

- + + +

- + + + +

... ...
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MON↑
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Languages/Problems - basic definitions

Alphabet is any non-empty finite set of symbols, e.g., A = {a, b} and
B = {0, 1}.
A word (string) is a finite sequence of symbols from a given alphabet,
e.g., “1110001110”.

The empty word, ε, is a sequence without symbols.

The length of a word is the number of symbols in it.

For a in the alphabet and w a word, #a(w) denotes the number of as in
w .

The set of all words over alphabet Γ is denoted by Γ∗, e.g.,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.
Any set of words, a subset of Γ∗, will be called a problems/language.

A great reference: Hopcroft and Ullman 1979.
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The Main Idea

We will associate each GQ (of type 〈1〉 or CE of type 〈1, 1〉) with a formal
language in {0, 1}∗. First, every finite model will get mapped to a string s by

Starting with a modelM = 〈M,A,B〉
Enumerating A as ~a

Writing a 0 for each element of A \ B and a 1 for each element of A ∩ B

From the earlier results, we have that

M∈ Q ⇔ 〈#0(s),#1(s)〉 ∈ Qc ,

23
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More Formally Defined

Definition

LetM = 〈M,A,B〉 be a model, ~a an enumeration of A, and n = |A|. We
define τ

(
~a,B

)
∈ {0, 1}n by

(
τ
(
~a,B

))
i =

{
0 ai ∈ A \ B
1 ai ∈ A ∩ B

Thus, τ defines the string corresponding to a particular finite model.

Definition

For a type 〈1, 1〉 quantifier Q, define the language of Q as

LQ =
{

s ∈ {0, 1}∗ | 〈#0(s),#1(s)〉 ∈ Qc}

24



Recap Universals and representations Quantifiers as Computational Problems

More Formally Defined

Definition

LetM = 〈M,A,B〉 be a model, ~a an enumeration of A, and n = |A|. We
define τ

(
~a,B

)
∈ {0, 1}n by

(
τ
(
~a,B

))
i =

{
0 ai ∈ A \ B
1 ai ∈ A ∩ B

Thus, τ defines the string corresponding to a particular finite model.

Definition

For a type 〈1, 1〉 quantifier Q, define the language of Q as

LQ =
{

s ∈ {0, 1}∗ | 〈#0(s),#1(s)〉 ∈ Qc}

24



Recap Universals and representations Quantifiers as Computational Problems

Example

U

A B

S0

S1

S2

S3

c1

c2
c3

c4

c5
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Examples of Quantifier Languages

Levery = {w | #0 (w) = 0}
Lsome = {w | #1 (w) > 0}
Lmost = {w | #1 (w) > #0 (w)}
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Finite automata

Definition

A non-deterministic finite automaton (FA) is a tuple (A,Q, qs, F , δ), where:

A is an input alphabet;

Q is a finite set of states;

qs ∈ Q is an initial state;

F ⊆ Q is a set of accepting states;

δ : Q × A −→ P(Q) is a transition function.
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Regular languages

Definition

The language accepted (recognized) by some FA H, L(H), is the set of all
words over the alphabet A which are accepted by H.

Definition

We say that a language L ⊆ A∗ is regular if and only if there exists some FA
H such that L = L(H).
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Examples of GQ Automata

1

0

0, 1

Figure: A finite state automaton for every.

0

1

0

1

0, 1

Figure: A finite state automaton for at least two.
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First-Order Definability

Not all quantifiers whose languages are accepted by DFAs are FO definable:

0
1

0

1

Figure: A cyclic finite state automaton for an even number of.
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Characterizing First-Order Definable GQs

Theorem (van Benthem 1986, p.156-157)

A quantifier Q is first-order definable iff LQ can be recognized by a
permutation-invariant acyclic finite state automaton.

Recall from last time:

Lemma (Ehrenfeucht-Fraïssé)

Q is FO-definable iff ∃n s.t.

M≡n M′ ⇒M ∈ Q iffM′ ∈ Q

where ≡n means Dup has n-round winning strategy in E-F game.

In our case:
A ∼n B ⇔ |A| = |B| = l < n or |A|, |B| ≥ n

andM≡n M′ iff A ∩ B,A \ B,B \ A,M \ (B ∪ A) all bear ∼n to their primed
counterparts.
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Interpret E-F “threshold” in “Tree of Numbers”

(n, n)(n+k,n-k) (n-k,n+k)(2n, 0) (0, 2n)

Figure: Fraïssé Threshold at level 2n

Homework: transform the above directly into an acyclic finite
automaton.
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Characterizing GQs with Regular Languages

The type 〈1〉 divisibility quantifier Dn is defined:

〈M,A〉 ∈ Dn iff |A| is divisible by n.

Theorem (Mostowski 1991)

Finite state automata accept exactly the class of quantifiers of type 〈1, . . . , 1〉
definable in first-order logic augmented with Dn for all n.
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Beyond Regular Languages

Lemma (Pumping Lemma)

Let L be a regular language. Then ∃p ≥ 1 s.t. every w ∈ L with len(w) ≥ p,
there are x , y , z s.t. w = xyz and

(1) len(y) ≥ 1

(2) len(xy) ≤ p

(3) xy iz ∈ L for all i ≥ 0

Corollary

Lmost is not regular.

Proof.

Suppose otherwise, and let p be the ‘pumping length’. Consider the word
w = 0p1p+1 ∈ Lmost. By assumption, w = xyz with len(xy) ≤ p and
len(y) ≥ 1. Thus, xy contains only 0s. Then w = xy2z would have to be in
Lmost, but it is not.
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Pushdown Automata

Essentially: augment a DFA with a last-in/first-out stack
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Push down automata

Definition

A non-deterministic push-down automaton (PDA) is a tuple (A, Γ,#,Q, qs, F , δ), where:

A is an input alphabet;

Γ is a stack alphabet;

# 6∈ Γ is a stack initial symbol, empty stack consists only of it;

Q is a finite set of states;

qs ∈ Q is an initial state;

F ⊆ Q is a set of accepting states;

δ : Q × (A ∪ {ε})× Γ −→ P(Q × Γ∗) is a transition function.
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Context-free languages

Definition

We say that a language L ⊆ A∗ is context-free if and only if there is a PDA H
such that L = L(H).

The context-free languages are a strict superset of the regular languages:
There is a PDA for Lab = {anbn : n ≥ 1}, though Lab is not regular (exercise!).
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PDA for Proportional Quantifiers

1, 0/ε

0, x/0x

1,#/#
1, x/1x

0, 1/ε
0,#/#

Figure: A PDA computing Lmost.
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Characterizing the PDA Quantifiers

Definition

A quantifier Q is first-order additively definable if there is a formula ϕ in the
first-order language with equality and an addition symbol +̄ such that

Qcab ⇔ 〈N,+, a, b〉 |= ϕ(a, b)

Theorem (van Benthem 1986, p.163-165)

LQ is computable by a pushdown automaton if and only if Q is first-order
additively definable.
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Aside: Deterministic Context-Free Languages

Kanazawa 2013 has characterized the monadic quantifiers accepted by
deterministic pushdown automata. (Unlike the finite-state case,
nondeterministic PDAs are strictly more powerful than the deterministic
counterparts.)
The characterization essentially blocks what we might call ‘multiply
proportional quantifiers’, such as:

Between two-fifths and seven-eights of all teenagers watch 10 hours of
TV a week.

So: the DPDA quantifiers are not closed under Boolean operations. It turns
out that the PDA quantifiers are the closure of the DPDA ones under Boolean
operations.
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Beyond context-free languages

The language
Labc = {ak bk ck : k ≥ 1}

is not context-free. More generally, neither is:

L3 = {w ∈ {a, b, c}∗ | #a(w) = #b(w) = #c(w)}

Question: does this language correspond to a GQ realized in natural
language? Clark n.d. and van Benthem 1987 suggest the type 〈1, 1, 1, 1〉
equal number of, as in:

An equal number of undergraduates, graduate students, and faculty
members live at Stanford.
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Chomsky’s Hierarchy

How psychologically real are those distinctions? See Szymanik 2016.
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