Learnability of Quantifiers
 Computational Representations of Quantifiers

Shane Steinert-Threlkeld \& Jakub Szymanik
University of Washington, Linguistics
ILLC
University of Amsterdam

Outline

(1) Recap
2) Universals and representations
(3) Quantifiers as Computational Problems

- Regular Languages and Finite Automata
- Context-Free Languages and Quantifiers

Recap

Yesterday:

- Basic examples of generalized quantifiers
- Constraints on GQs: ISOM, EXT, CONS, MON
- Definability

Today:

- We will start by exploring consequences of the proposed universals
- We will give computational representations of GQs by looking at machines accepting corresponding formal languages
- Definability results of the kind we saw yesterday will correspond to the Chomsky Hierarchy

Recap

Yesterday:

- Basic examples of generalized quantifiers
- Constraints on GQs: ISOM, EXT, CONS, MON
- Definability

Today:

- We will start by exploring consequences of the proposed universals
- We will give computational representations of GQs by looking at machines accepting corresponding formal languages
- Definability results of the kind we saw yesterday will correspond to the Chomsky Hierarchy

Outline

2) Universals and representations
(3) Quantifiers as Computational Problems

- Regular Languages and Finite Automata
- Context-Free Languages and Quantifiers

Recall...

ISOM If $(M, A, B) \cong\left(M^{\prime}, A^{\prime}, B^{\prime}\right)$, then $\mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathbf{M}^{\prime}}\left(A^{\prime}, B^{\prime}\right)$
EXT If $M \subseteq M^{\prime}$, then $\mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathbf{M}^{\prime}}(A, B)$
CONS $\mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathrm{M}}(A, A \cap B)$

Consequences of Constraints

Theorem

A quantifier Q satisfies CONS and EXT if and only if for every M, M^{\prime} and $A, B \subseteq M, A^{\prime}, B^{\prime} \subseteq M^{\prime}$, if $|A-B|=\left|A^{\prime}-B^{\prime}\right|$ and $|A \cap B|=\left|A^{\prime} \cap B^{\prime}\right|$, then $Q_{M} A B \Leftrightarrow Q_{M^{\prime}} A^{\prime} B^{\prime}$.

GQs as Binary Relations on \mathbb{N}

In other words, quantifiers that satisfy CONS and EXT can be summarized succinctly as binary relations on natural numbers. Given Q we define:

$$
Q^{c} x y \quad \Leftrightarrow \quad \exists(M, A, B) Q_{M} A B \text { and }|A-B|=x,|A \cap B|=y .
$$

Standard generalized quantifiers can thus be seen as particular simple cases.

GQs as Binary Relations on \mathbb{N}

In other words, quantifiers that satisfy CONS and EXT can be summarized succinctly as binary relations on natural numbers. Given Q we define:

$$
Q^{c} x y \Leftrightarrow \exists(M, A, B) Q_{M} A B \text { and }|A-B|=x,|A \cap B|=y
$$

Standard generalized quantifiers can thus be seen as particular simple cases.

$$
\begin{aligned}
\text { every }^{c} x y & \Leftrightarrow x
\end{aligned}=0, ~ \begin{aligned}
& \text { some }^{c} x y \Leftrightarrow y>0 \\
& \text { at least three } x y \\
& \text { most }^{c} x y \Leftrightarrow y>3 \\
& \text { an even number of }
\end{aligned}
$$

Number triangle representation

Let Q be a CE-quantifier. Then define relation: $Q(k, m)$ iff there are M and $A, B \subseteq M$ such that $\operatorname{card}(A-B)=k, \operatorname{card}(A \cap B)=m$, and $Q_{M}(A, B)$.
$(0,0)$
$(2,0) \quad(0,1)$
$(4,0) \quad(0,2)$
$(3,1) \quad(0,1) \quad(0,2) \quad(1,3) \quad(0,4)$

Example 1: which?

Example 2: which?

Example 3: which?

Example 4: which?

Example 5: which?

Example 6: which?

Example 7: which?

Example 8: which?

†MON

†MON

$\uparrow M O N$

$\mathrm{MON} \uparrow$

Outline

(2) Universals and representations
(3) Quantifiers as Computational Problems

- Regular Languages and Finite Automata
- Context-Free Languages and Quantifiers

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\#_{a}(w)$ denotes the number of as in
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000, \ldots\}$.
- Any set of words, a subset of Γ^{*}, will be called a problems/language. - A great reference: Hopcroft and Ullman 1979.

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\#_{a}(w)$ denotes the number of as in
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000$,
- Any set of words, a subset of Γ^{*}, will be called a problems/language. - A great reference: Hopcroft and Ullman 1979.

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\#_{a}(w)$ denotes the number of as in
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000$,
- Any set of words, a subset of Γ^{*}, will be called a problems/language.
- A great reference: Hopcroft and Ullman 1979.

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\# a(w)$ denotes the number of as in
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000$,
- Âny set of words, a subset of Γ^{*}, will be called a problems/language.
- A great reference: Hopcroft and Ullman 1979.

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\#_{a}(w)$ denotes the number of as in w.
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000, \ldots\}$.
- Any set of words, a subset of Γ^{*}, will be called a problems/language.
- A great reference: Hopcroft and Ullman 1979.

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\#_{a}(w)$ denotes the number of $a s$ in w.
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000, \ldots\}$.
- Any set of words, a subset of Γ^{*}, will be called a problems/language.

Languages/Problems - basic definitions

- Alphabet is any non-empty finite set of symbols, e.g., $A=\{a, b\}$ and $B=\{0,1\}$.
- A word (string) is a finite sequence of symbols from a given alphabet, e.g., "1110001110".
- The empty word, ε, is a sequence without symbols.
- The length of a word is the number of symbols in it.
- For a in the alphabet and w a word, $\#_{a}(w)$ denotes the number of as in w.
- The set of all words over alphabet Γ is denoted by Γ^{*}, e.g., $\{0,1\}^{*}=\{\varepsilon, 0,1,00,01,10,11,000, \ldots\}$.
- Any set of words, a subset of Γ^{*}, will be called a problems/language.
- A great reference: Hopcroft and Ullman 1979.

The Main Idea

We will associate each GQ (of type $\langle 1\rangle$ or CE of type $\langle 1,1\rangle$) with a formal language in $\{0,1\}^{*}$. First, every finite model will get mapped to a string s by

- Starting with a model $\mathcal{M}=\langle M, A, B\rangle$
- Enumerating A as \vec{a}
- Writing a 0 for each element of $A \backslash B$ and a 1 for each element of $A \cap B$

From the earlier results, we have that

$$
\mathcal{M} \in Q \quad \Leftrightarrow \quad\left\langle \#_{0}(s), \#_{1}(s)\right\rangle \in Q^{c},
$$

More Formally Defined

Definition

Let $\mathcal{M}=\langle M, A, B\rangle$ be a model, \vec{a} an enumeration of A, and $n=|A|$. We define $\tau(\vec{a}, B) \in\{0,1\}^{n}$ by

$$
(\tau(\vec{a}, B))_{i}= \begin{cases}0 & a_{i} \in A \backslash B \\ 1 & a_{i} \in A \cap B\end{cases}
$$

Thus, τ defines the string corresponding to a particular finite model.

Definition

For a type $\langle 1,1\rangle$ quantifier Q, define the language of Q as

More Formally Defined

Definition

Let $\mathcal{M}=\langle M, A, B\rangle$ be a model, \vec{a} an enumeration of A, and $n=|A|$. We define $\tau(\vec{a}, B) \in\{0,1\}^{n}$ by

$$
(\tau(\vec{a}, B))_{i}= \begin{cases}0 & a_{i} \in A \backslash B \\ 1 & a_{i} \in A \cap B\end{cases}
$$

Thus, τ defines the string corresponding to a particular finite model.

Definition

For a type $\langle 1,1\rangle$ quantifier Q, define the language of Q as

$$
\mathcal{L}_{Q}=\left\{s \in\{0,1\}^{*} \mid\left\langle \#_{0}(s), \#_{1}(s)\right\rangle \in Q^{c}\right\}
$$

Example

Examples of Quantifier Languages

- $\mathcal{L}_{\text {every }}=\left\{w \mid \#_{0}(w)=0\right\}$
- $\mathcal{L}_{\text {some }}=\left\{w \mid \#_{1}(w)>0\right\}$
- $\mathcal{L}_{\text {most }}=\left\{w \mid \#_{1}(w)>\#_{0}(w)\right\}$

Outline

(1) Recap
2) Universals and representations
(3) Quantifiers as Computational Problems

- Regular Languages and Finite Automata
- Context-Free Languages and Quantifiers

Finite automata

Definition
A non-deterministic finite automaton (FA) is a tuple $\left(A, Q, q_{s}, F, \delta\right)$, where:

- A is an input alphabet;
- Q is a finite set of states;
- $q_{s} \in Q$ is an initial state;
- $F \subseteq Q$ is a set of accepting states;
- $\delta: Q \times A \longrightarrow \mathcal{P}(Q)$ is a transition function.

Regular languages

Definition
The language accepted (recognized) by some FA H, L(H), is the set of all words over the alphabet A which are accepted by H.

Definition
We say that a language $L \subseteq A^{*}$ is regular if and only if there exists some FA H such that $L=L(H)$.

Examples of GQ Automata

Figure: A finite state automaton for every.

Figure: A finite state automaton for at least two.

Examples of GQ Automata

Figure: A finite state automaton for every.

Figure: A finite state automaton for at least two.

First-Order Definability

Not all quantifiers whose languages are accepted by DFAs are FO definable:

Figure: A cyclic finite state automaton for an even number of.

Characterizing First-Order Definable GQs

Theorem (van Benthem 1986, p.156-157)
A quantifier Q is first-order definable iff \mathcal{L}_{Q} can be recognized by a permutation-invariant acyclic finite state automaton.

Recall from last time
Lemma (Ehrenfeucht-Fraïssé)
\bigcirc is FO-definable iff $\exists \mathrm{n}$ s.t.
where \equiv_{n} means Dup has n-round winning strategy in E-F game.
In our case:
and $\mathcal{M} \equiv{ }_{n} \mathcal{M}^{\prime}$ iff $A \cap B, A \backslash B, B \backslash A, M \backslash(B \cup A)$ all bear \sim_{n} to their primed
counterparts.

Characterizing First-Order Definable GQs

Theorem (van Benthem 1986, p.156-157)
A quantifier Q is first-order definable iff \mathcal{L}_{Q} can be recognized by a permutation-invariant acyclic finite state automaton.

Recall from last time:
Lemma (Ehrenfeucht-Fraïssé)
Q is FO-definable iff $\exists n$ s.t.

$$
\mathcal{M} \equiv_{n} \mathcal{M}^{\prime} \Rightarrow \mathcal{M} \in Q \text { iff } \mathcal{M}^{\prime} \in Q
$$

where \equiv_{n} means Dup has n-round winning strategy in E-F game.
In our case:

$$
A \sim_{n} B \Leftrightarrow|A|=|B|=I<n \text { or }|A|,|B| \geq n
$$

and $\mathcal{M} \equiv{ }_{n} \mathcal{M}^{\prime}$ iff $A \cap B, A \backslash B, B \backslash A, M \backslash(B \cup A)$ all bear \sim_{n} to their primed counterparts.

Interpret E-F "threshold" in "Tree of Numbers"

Figure: Fraïssé Threshold at level $2 n$

Homework: transform the above directly into an acyclic finite automaton.

Characterizing GQs with Regular Languages

The type $\langle 1\rangle$ divisibility quantifier D_{n} is defined:

$$
\langle M, A\rangle \in D_{n} \quad \text { iff } \quad|A| \text { is divisible by } n .
$$

Theorem (Mostowski 1991)
Finite state automata accept exactly the class of quantifiers of type $\langle 1, \ldots, 1\rangle$ definable in first-order logic augmented with D_{n} for all n.

Beyond Regular Languages

Lemma (Pumping Lemma)

Let L be a regular language. Then $\exists p \geq 1$ s.t. every $w \in L$ with len $(w) \geq p$, there are x, y, z s.t. $w=x y z$ and
(1) $\operatorname{len}(y) \geq 1$
(2) $\operatorname{len}(x y) \leq p$
(3) $x y^{i} z \in L$ for all $i \geq 0$

Corollary

I most is not regular.

Proof
Suppose otherwise, and let p be the 'pumping length'. Consider the word $w=0^{p} 1^{p+1} \in L_{m o s t}$. By assumption, $w=x y z$ with $l e n(x y) \leq p$ and $l e n(y) \geq 1$. Thus, $x y$ contains only 0 s. Then $w=x y^{2} z$ would have to be in $L_{\text {most }}$, but it is not.

Beyond Regular Languages

Lemma (Pumping Lemma)

Let L be a regular language. Then $\exists p \geq 1$ s.t. every $w \in L$ with len $(w) \geq p$, there are x, y, z s.t. $w=x y z$ and
(1) $\operatorname{len}(y) \geq 1$
(2) $\operatorname{len}(x y) \leq p$
(3) $x y^{i} z \in L$ for all $i \geq 0$

Corollary

$L_{\text {most }}$ is not regular.

Proof.

Suppose otherwise, and let p be the 'pumping length'. Consider the word $w=0^{p} 1^{p+1} \in L_{\text {most }}$. By assumption, $w=x y z$ with $\operatorname{len}(x y) \leq p$ and $\operatorname{len}(y) \geq 1$. Thus, $x y$ contains only 0 s. Then $w=x y^{2} z$ would have to be in $L_{\text {most }}$, but it is not.

Outline

(1) Recap
2) Universals and representations
(3) Quantifiers as Computational Problems

- Regular Languages and Finite Automata
- Context-Free Languages and Quantifiers

Pushdown Automata

Essentially: augment a DFA with a last-in/first-out stack

Push down automata

Definition
A non-deterministic push-down automaton (PDA) is a tuple ($\left.A, \Gamma, \#, Q, q_{s}, F, \delta\right)$, where:

- A is an input alphabet;
- Γ is a stack alphabet;
- \# $\notin \Gamma$ is a stack initial symbol, empty stack consists only of it;
- Q is a finite set of states;
- $q_{s} \in Q$ is an initial state;
- $F \subseteq Q$ is a set of accepting states;
- $\delta: Q \times(A \cup\{\varepsilon\}) \times \Gamma \longrightarrow \mathcal{P}\left(Q \times \Gamma^{*}\right)$ is a transition function.

Context-free languages

Definition

We say that a language $L \subseteq A^{*}$ is context-free if and only if there is a PDA H such that $L=L(H)$.

The context-free languages are a strict superset of the regular languages:
There is a PDA for $L_{a b}=\left\{a^{n} b^{n}: n \geq 1\right\}$, though $L_{a b}$ is not regular (exercise!).

PDA for Proportional Quantifiers

Figure: A PDA computing $L_{\text {most }}$.

Characterizing the PDA Quantifiers

Definition

A quantifier Q is first-order additively definable if there is a formula φ in the first-order language with equality and an addition symbol \mp such that

$$
Q^{c} a b \quad \Leftrightarrow \quad\langle\mathbb{N},+, a, b\rangle \models \varphi(a, b)
$$

Theorem (van Benthem 1986, p.163-165)
\mathcal{L}_{Q} is computable by a pushdown automaton if and only if Q is first-order additively definable.

Aside: Deterministic Context-Free Languages

Kanazawa 2013 has characterized the monadic quantifiers accepted by deterministic pushdown automata. (Unlike the finite-state case, nondeterministic PDAs are strictly more powerful than the deterministic counterparts.)
The characterization essentially blocks what we might call 'multiply proportional quantifiers', such as:

- Between two-fifths and seven-eights of all teenagers watch 10 hours of TV a week.

So: the DPDA quantifiers are not closed under Boolean operations. It turns out that the PDA quantifiers are the closure of the DPDA ones under Boolean
onerations.

Aside: Deterministic Context-Free Languages

Kanazawa 2013 has characterized the monadic quantifiers accepted by deterministic pushdown automata. (Unlike the finite-state case, nondeterministic PDAs are strictly more powerful than the deterministic counterparts.)
The characterization essentially blocks what we might call 'multiply proportional quantifiers', such as:

- Between two-fifths and seven-eights of all teenagers watch 10 hours of TV a week.
So: the DPDA quantifiers are not closed under Boolean operations. It turns out that the PDA quantifiers are the closure of the DPDA ones under Boolean operations.

Beyond context-free languages

The language

$$
L_{a b c}=\left\{a^{k} b^{k} c^{k}: k \geq 1\right\}
$$

is not context-free. More generally, neither is:

$$
L_{3}=\left\{w \in\{a, b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}
$$

Question: does this language correspond to a GQ realized in natural
language? Clark n.d. and van Benthem 1987 suggest the type $\langle 1,1,1,1\rangle$
equal number of, as in:

- An equal number of undergraduates, graduate students, and faculty members live at Stanford.

Beyond context-free languages

The language

$$
L_{a b c}=\left\{a^{k} b^{k} c^{k}: k \geq 1\right\}
$$

is not context-free. More generally, neither is:

$$
L_{3}=\left\{w \in\{a, b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}
$$

Question: does this language correspond to a GQ realized in natural language?
equal number of, as in:

- An equal number of undergraduates, graduate students, and faculty members live at Stanford.

Beyond context-free languages

The language

$$
L_{a b c}=\left\{a^{k} b^{k} c^{k}: k \geq 1\right\}
$$

is not context-free. More generally, neither is:

$$
L_{3}=\left\{w \in\{a, b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}
$$

Question: does this language correspond to a GQ realized in natural language? Clark n.d. and van Benthem 1987 suggest the type $\langle 1,1,1,1\rangle$ equal number of, as in:

- An equal number of undergraduates, graduate students, and faculty members live at Stanford.

Chomsky's Hierarchy

How psychologically real are those distinctions? See Szymanik 2016.

