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Recap

Yesterday:

How to represent GQs as formal languages

Relations between logical definability and the Chomsky hierarchy

Today:

The role of universals in formal language learning

A Bayesian model of quantifier learning

Introduction to neural networks, with an eye towards quantifiers
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Recall...

Levery = {w | #0 (w) = 0}
Lsome = {w | #1 (w) > 0}
Lmost = {w | #1 (w) > #0 (w)}
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A Model of Language Learning

a

aa

aaaaaaa

ab

aaaabbb

· · ·
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Some Definitions

A text ε over L is an infinite sequence of words from L

A learner ` is a function from finite fragments of texts to languages
E.g.:

`({a, aa, aaaaaa}) = a∗

`({a, aa, aaaaaa, ab}) = a∗ ∪ {ab}
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Identifiability

L is finitely identifiable on ε by ` if there is an n s.t. `(ε � n) = L and `
‘announces the correctness of its verdict’

L is identifiable in the limit on ε by ` if there is an n s.t. ∀m ≥ n,
`(ε � m) = L

A class of languages L is identifiable if there is an ` that identifies every
L ∈ L on every ε
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Identifiability and the Chomsky hierarchy

Anomalous text Recursively enumerable
Recursive

Informant Primitive recursive
Context–sensitive
Context–free
Regular
Superfinite

Text Finite cardinality languages
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Universals and Learnability

Question

Do the universals for quantifiers help any this notion of learnability?
I.e.: what about sub-classes of languages defined by, e.g. monotonicity?
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Positive Result

Theorem (Tiede 1999)

The set of first-order definable ↑MON quantifiers is identifiable in the limit.
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Negative Result(s)

Theorem (Tiede 1999)

The set of first-order definable MON↑ quantifiers is not identifiable in the limit.
(Nor are the remaining two monotonicity profiles.)
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Universals Restricting the Space

The Big Question

Why do the attested universals hold?
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Universals Restricting the Space

The Big Question

Why do the attested universals hold?

They greatly restrict the search space that a language learner must explore
when learning the meanings of expressions. This makes it easier (possible?)
for them to learn such meanings from relatively small input.
(Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolsci 2009)

Compare: Poverty of the Stimulus argument for UG.
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Learning Set-up

Piantadosi, Tenenbaum, and Goodman 2013
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LoT Grammar

Piantadosi, Tenenbaum, and Goodman 2013
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Inference

P(m|u1, c1, u2, c2, . . . un, cn) ∝ P(u1, u2, . . . , un|m, c1, . . . , cn) · P(m)

∝
n∏

i=1

P(ui |m, ci) · P(m)

Prior P(m): determined by the LoT grammar; shorter-to-express meanings
are preferred.

Likelihood P(ui |m, ci): preference for more informative, but with noise.
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Results
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Conclusion

“Likely, the unrestricted space has many hypotheses which are so
implausible, they can be ignored quickly and do not affect learning. The hard
part of learning, may be choosing between the plausible competitor
meanings, not in weeding out a large space of potential meanings.”
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Research Questions

Does this model predict human learning curves well?

How sensitive are the model and its results sensitive to various choices
(e.g. primitives, weights, shape of likelihood function)?

Does it say anything general about e.g. monotone and topic-neutral
quantifiers?
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Today’s Plan

1. Neural networks: computation
2. Neural networks: learning
3. Hands-on experiment: learning quantifiers

Goals:

enough background and material so that you can begin playing around
with your own experimental ideas by the end of today

develop a bit of a map of the field, with pointers to where to go next

Tomorrow:

Applied to explaining why semantic universals hold

For quantifiers, but also in other semantic domains

Connections with complexity and evolution
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What I’m Presupposing

Some mathematical notation/concepts from:

Linear algebra (matrix multiplication, e.g.)

Multivariable calculus (partial derivatives)

Some programming experience:

Basics of Python

Basic syntax in NumPy

But: all concepts and syntax can be explained intuitively, so please ask for
clarification at all points!
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Tutorial

For just these slides, plus some bonus slides, and the Jupyter Notebook:

https://github.com/shanest/nn-tutorial
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Artificial Neuron
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Artificial Neuron

a0

a1

a2
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Artificial Neuron

a0

a1

a2

w0

w1

w2

a = f (a0 · w0 + a1 · w1 + a2 · w2)
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Activation Function

1 σ(x) = 1
1+e−x

More on choosing activation functions later in the tutorial.
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Computing ‘and’

p q p ∧ q

1 1 1
1 0 0
0 1 0
0 0 0

28



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

Computing ‘and’

p

q

bias

20

20

-30

1

1

1

1

0

1

0

1

1

0

0

1

a = σ(1 · 20 + 1 · 20 + 1 · −30) = σ(10) ≈ 1

a = σ(1 · 20 + 0 · 20 + 1 · −30) = σ(−10) ≈ 0

a = σ(0 · 20 + 1 · 20 + 1 · −30) = σ(−10) ≈ 0

a = σ(0 · 20 + 0 · 20 + 1 · −30) = σ(−30) ≈ 0
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Computing ‘and’

p

q
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Computing ‘and’

p

q

a ≥ 0.5
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Computing ‘xor’

p q p xor q

1 1 0
1 0 1
0 1 1
0 0 0
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Computing ‘xor’

p

q
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Computing ‘xor’

p

q

xor is not linearly separable
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Computing ‘xor’

bias

20

20

-30

AND

p

q

bias

20

20

-10

OR

-20

-20

30

NAND

Exercise: show that the hidden units behave as labeled.
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Computing ‘xor’

p

q
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Computing ‘xor’

p

q

aOR ≥ 0.5
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Computing ‘xor’

p

q

aOR ≥ 0.5

aNAND ≥ 0.5

34



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

Computing Many Examples

It’s often very useful to compute over a ‘batch’ of inputs at once. The linear
combination then turns into a matrix multiplication:

~a = f




x0
0 x0

1 · · · x0
n

x1
0 x1

1 · · · x1
n

...
...

. . .
...

xm
0 xm

1 · · · xm
n




w0
0 w1

0 · · · w l
0

w0
1 w1

1 · · · w l
1

...
...

. . .
...

w0
n w1

n · · · w l
n

+


b0 b1 · · · bl

b0 b1 · · · bl
...

...
. . .

...
b0 b1 · · · bl




= f (xW + b)

x i
j : j th feature of input i

w l
k : weight from neuron k to neuron l in next layer

bm: bias to neuron m in next layer

Exercises:

write down W 1 and W 2 for the xor network.

re-write the above as f (xW ) by adding a column of 1s to x and a new
row to W .
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Hidden Representations

Key idea: hidden layers of a neural network can encode high-level/abstract
features of the input.
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(Supervised) Learning

Where do the weights and biases come from? They can be learned from
data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

Give the network a bunch of inputs.

Compare its outputs to the true outputs.

Update the weights and biases to move the network’s outputs closer to
the true outputs.

The last step is done via gradient descent (and refinements thereof).

38



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

(Supervised) Learning

Where do the weights and biases come from? They can be learned from
data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

Give the network a bunch of inputs.

Compare its outputs to the true outputs.

Update the weights and biases to move the network’s outputs closer to
the true outputs.

The last step is done via gradient descent (and refinements thereof).

38



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

(Supervised) Learning

Where do the weights and biases come from? They can be learned from
data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

Give the network a bunch of inputs.

Compare its outputs to the true outputs.

Update the weights and biases to move the network’s outputs closer to
the true outputs.

The last step is done via gradient descent (and refinements thereof).

38



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

(Supervised) Learning

Where do the weights and biases come from? They can be learned from
data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

Give the network a bunch of inputs.

Compare its outputs to the true outputs.

Update the weights and biases to move the network’s outputs closer to
the true outputs.

The last step is done via gradient descent (and refinements thereof).

38



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

(Supervised) Learning

Where do the weights and biases come from? They can be learned from
data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

Give the network a bunch of inputs.

Compare its outputs to the true outputs.

Update the weights and biases to move the network’s outputs closer to
the true outputs.

The last step is done via gradient descent (and refinements thereof).

38



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

(Supervised) Learning

Where do the weights and biases come from? They can be learned from
data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

Give the network a bunch of inputs.

Compare its outputs to the true outputs.

Update the weights and biases to move the network’s outputs closer to
the true outputs.

The last step is done via gradient descent (and refinements thereof).

38



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

Gradient Descent: Example

Task: predict a true value y = 2.
“Model”: one parameter θ, outputs ŷ = θ.
Loss function:

L(θ, y) = (ŷ(θ)− y)2
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Gradient Descent: Example

θ

L(θ, 2)

θ0 = 0.5

θ1 = 1.1

θ2 = 1.46 . . .

∂

∂θ
L(θ, y) = 2(θ − y)

θt+1 = θt − α ·
∂

∂θ
L(θ, y)
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Gradient Descent for NNs

A neural network computes a complex function of its input. For an L-layer
feed-forward network:

ŷ(x) = fL(fL−1(· · · f2(f1(xW 1 + b1)W 2 + b2) · · · )W L + bL)

All of the weights and biases form a long vector of parameters θ. So instead
of a partial derivative, we take a gradient:

∇θL(ŷ(θ), y) =
〈

∂

∂θ1
L, . . . , ∂

∂θN
L
〉

The (negative) gradient tells us which direction in ‘parameter space’ to walk in
order to make the loss (L) smaller, i.e. to make the network’s output closer to
the true output.
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∇θL(ŷ(θ), y) =
〈

∂

∂θ1
L, . . . , ∂

∂θN
L
〉

The (negative) gradient tells us which direction in ‘parameter space’ to walk in
order to make the loss (L) smaller, i.e. to make the network’s output closer to
the true output.

41



Recap Formal Language Learning of GQs Bayesian Learning Introduction to Neural Networks

Activation Functions

1

−1

σ(x) = 1
1+e−xtanh(x)

ReLU(x) = max(0, x)
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Activation Functions

1

−1

σ(x) = 1
1+e−xtanh(x)

ReLU(x) = max(0, x)

ReLUs are incredibly popular at the moment, as are refinements: softplus,
leaky ReLU, exponential linear (ELU), gaussian linear (GLU), . . .

Glorot, Bordes, and Bengio 2011; Hahnioser, Sarpeshkar, Mahowald,
Douglas, and Seung 2000
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Loss Functions

Regression: different kinds of geometrical distances, e.g.

`(ŷ , y) = (ŷ − y)2

Classification: cross entropy:

`(ŷ , y) = −
∑

yi · ln(ŷi) = − ln(ŷtrue class)

ŷtrue class
1
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Example of Learned Hidden Layers

Olah, Mordvintsev, and Schubert 2017; Yosinski, Clune, Bengio, and Lipson
2014

https://distill.pub/2017/feature-visualization/
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Learned Representations

Key idea: a neural network can learn which high-level/abstract features of the
input are useful in helping it solve its task. (Features are learned, instead of

engineered by us.)
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Outline
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Anatomy of a DL Experiment

(1) Specify parameters

(2) Build data input/generation pipeline
Train/test split [dev as well; more later]

(3) Build model

(4) Train the model!
(a) Evaluate at regular intervals
(b) Measure your variables of interest
(c) Monitor train/test loss
(d) Early stopping [later in tutorial]

(5) Analysis
quantitative
qualitative behavior

NOTE: keep detailed records about what you’re doing!
For guidance on keeping records and writing up results, see these lecture
notes from Sam Bowman.

47
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To the code!

https://github.com/shanest/nn-tutorial/blob/master/tutorial.ipynb
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