Bayesian Learning

Introduction to Neural Networks

Learnability of Quantifiers ML1: past approaches, intro to neural networks

Shane Steinert-Threlkeld & Jakub Szymanik University of Washington, Linguistics ILLC University of Amsterdam

Recap	
•••	

Outline

Introduction to Neural Networks

- NNs: Computation

Recap	
0.	

Yesterday:

- How to represent GQs as formal languages
- Relations between logical definability and the Chomsky hierarchy

Today:

- The role of universals in formal language learning
- A Bayesian model of quantifier learning
- Introduction to neural networks, with an eye towards quantifiers

Recap	
0.	

Yesterday:

- How to represent GQs as formal languages
- Relations between logical definability and the Chomsky hierarchy

Today:

- The role of universals in formal language learning
- A Bayesian model of quantifier learning
- Introduction to neural networks, with an eye towards quantifiers

riccup		an
	00	up

Bayesian Learning

Introduction to Neural Networks

Outline

2 Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

- NNs: Computation
- NNs: Learning
- Hands-on Example

Recap OO	Formal Language Learning of GQs
Recall	

Bayesian Learning

Introduction to Neural Networks

•
$$\mathcal{L}_{every} = \{ w \mid \#_0 (w) = 0 \}$$

• $\mathcal{L}_{some} = \{ w \mid \#_1 (w) > 0 \}$
• $\mathcal{L}_{most} = \{ w \mid \#_1 (w) > \#_0 (w) \}$

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

A Model of Language Learning

● a

• aa

aaaaaaaa

ab

aaaabbb

• • • •

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

A Model of Language Learning

● a

● aa

aaaaaaaa

ab

aaaabbb

• • • •

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

A Model of Language Learning

- a
- aa

aaaaaaaa

- ab
- aaaabbb
- • •

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

A Model of Language Learning

- a
- aa
- aaaaaaaa
- ab
- aaaabbb
-

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

A Model of Language Learning

- a
- aa
- aaaaaaaa
- ab
- aaaabbb
- • •

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

A Model of Language Learning

- a
- aa
- aaaaaaaa
- ab
- aaaabbb
- o ...

R	e	ca	p	
C	C	2		

Bayesian Learning

Introduction to Neural Networks

Some Definitions

• A *text* ε over *L* is an infinite sequence of words from *L*

● A *learner* ℓ is a function from finite fragments of texts to languages E.g.:

 $\ell(\{a, aa, aaaaaaa\}) = a^*$ $\ell(\{a, aa, aaaaaa, ab\}) = a^* \cup \{ab\}$

Recap	Formal Language Learning of GQs
00	0000000

Bayesian Learning

Introduction to Neural Networks

Some Definitions

- A *text* ε over *L* is an infinite sequence of words from *L*
- A learner ℓ is a function from finite fragments of texts to languages E.g.:

 $\ell(\{a, aa, aaaaaaa\}) = a^*$ $\ell(\{a, aa, aaaaaa, ab\}) = a^* \cup \{ab\}$

Recap	Formal Language Learning of GQs
00	0000000

Some Definitions

Bayesian Learning

Introduction to Neural Networks

• A text ε over L is an infinite sequence of words from L

• A learner ℓ is a function from finite fragments of texts to languages E.g.:

 $\ell(\{a, aa, aaaaaaa\}) = a^*$ $\ell(\{a, aa, aaaaaaa, ab\}) = a^* \cup \{ab\}$

Recap	Formal Language Learning of GQs
00	00000000

Bayesian Learning

Identifiability

- L is *finitely identifiable* on ε by ℓ if there is an n s.t. ℓ(ε ↾ n) = L and ℓ 'announces the correctness of its verdict'
- *L* is *identifiable in the limit* on ε by ℓ if there is an *n* s.t. $\forall m \ge n$, $\ell(\varepsilon \upharpoonright m) = L$
- A class of languages \mathcal{L} is identifiable if there is an ℓ that identifies every $L \in \mathcal{L}$ on every ε

Recap 00	Formal Language Learning of GQs

Identifiability

- L is finitely identifiable on ε by ℓ if there is an n s.t. ℓ(ε ↾ n) = L and ℓ 'announces the correctness of its verdict'
- *L* is *identifiable in the limit* on ε by ℓ if there is an *n* s.t. $\forall m \ge n$, $\ell(\varepsilon \upharpoonright m) = L$
- A class of languages $\mathcal L$ is identifiable if there is an ℓ that identifies every $L\in\mathcal L$ on every ε

Recap 00	Formal Language Learning of GQs

Identifiability

- L is finitely identifiable on ε by ℓ if there is an n s.t. ℓ(ε ↾ n) = L and ℓ 'announces the correctness of its verdict'
- *L* is *identifiable in the limit* on ε by ℓ if there is an *n* s.t. $\forall m \ge n$, $\ell(\varepsilon \upharpoonright m) = L$
- A class of languages \mathcal{L} is identifiable if there is an ℓ that identifies every $L \in \mathcal{L}$ on every ε

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

Identifiability and the Chomsky hierarchy

Anomalous text	Recursively enumerable
	Recursive
Informant	Primitive recursive
	Context-sensitive
	Context–free
	Regular
	Superfinite
Text	Finite cardinality languages

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

Universals and Learnability

Question

Do the universals for quantifiers help any this notion of learnability? I.e.: what about sub-classes of languages defined by, e.g. monotonicity?

Recap	
00	

Positive Result

Bayesian Learning

Introduction to Neural Networks

Theorem (Tiede 1999)

The set of first-order definable *↑*MON quantifiers is identifiable in the limit.

 Recap
 Formal Language Learning of GQs

 00
 00000000●

Negative Result(s)

Bayesian Learning

Introduction to Neural Networks

Theorem (Tiede 1999)

The set of first-order definable MON[↑] quantifiers is not identifiable in the limit. (Nor are the remaining two monotonicity profiles.)

Bayesian Learning

Introduction to Neural Networks

Outline

3 Bayesian Learning

Introduction to Neural Networks
 NNs: Computation
 NNs: Learning

Hands-on Evamo

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

Why do the attested universals hold?

They greatly restrict the search space that a language learner must explore when learning the meanings of expressions. This makes it easier (possible?) for them to learn such meanings from relatively small input. (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolsci 2009)

Compare: Poverty of the Stimulus argument for UG.

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

riccup	20	2
	 -0	9

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

riccup	20	2
	 -0	9

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

riccup	20	2
	 -0	9

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

riccup	20	2
	 -0	9

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

riccup	20	2
	 -0	9

Bayesian Learning

Introduction to Neural Networks

Universals Restricting the Space

The Big Question

Bayesian Learning

Introduction to Neural Networks

Learning Set-up

Piantadosi, Tenenbaum, and Goodman 2013

Bayesian Learning

Introduction to Neural Networks

LoT Grammar

Nonterminal		Expansion	Gloss
START	\rightarrow	$\lambda \ A \ B$. BOOL	Function of A and B
BOOL	\rightarrow	true	Always true
	\rightarrow	false	Always false
	\rightarrow	(card > SET SET)	Compare cardinalities $(>)$
	\rightarrow	(card = SET SET)	Check if cardinalities are equal
	\rightarrow	(subset? SET SET)	Is a subset?
	\rightarrow	(empty? SET)	Is a set empty?
	\rightarrow	(nonempty? SET)	Is a set not empty?
	\rightarrow	(exhaustive? SET)	Is the set the entire set in the context?
	\rightarrow	(singleton? SET)	Contains 1 element?
	\rightarrow	(doubleton? SET)	Contains 2 elements?
	\rightarrow	(tripleton? SET)	Contains 3 elements?
SET	\rightarrow	$(union \ SET \ SET)$	Union of sets
	\rightarrow	(intersection SET SET)	Intersection of sets
	\rightarrow	(set-difference SET SET)	Difference of sets
	\rightarrow	A	Argument A
	\rightarrow	В	Argument B

Piantadosi, Tenenbaum, and Goodman 2013

Recap	Formal Language Learning
00	00000000

Bayesian Learning

Inference

$$P(m|u_1, c_1, u_2, c_2, \dots, u_n, c_n) \propto P(u_1, u_2, \dots, u_n|m, c_1, \dots, c_n) \cdot P(m)$$
$$\propto \prod_{i=1}^n P(u_i|m, c_i) \cdot P(m)$$

Prior P(m): determined by the LoT grammar; shorter-to-express meanings are preferred.

Likelihood $P(u_i|m, c_i)$: preference for more informative, but with noise.
Recap	Formal Language Learning o
00	00000000

Inference

$$P(m|u_1, c_1, u_2, c_2, \dots, u_n, c_n) \propto P(u_1, u_2, \dots, u_n|m, c_1, \dots, c_n) \cdot P(m)$$
$$\propto \prod_{i=1}^n P(u_i|m, c_i) \cdot P(m)$$

Prior P(m): determined by the LoT grammar; shorter-to-express meanings are preferred.

Recap	Formal Language Learning
00	00000000

Inference

Bayesian Learning

Introduction to Neural Networks

$\begin{aligned} P(m|u_1,c_1,u_2,c_2,\ldots u_n,c_n) \propto P(u_1,u_2,\ldots,u_n|m,c_1,\ldots,c_n) \cdot P(m) \\ \propto \prod_{i=1}^n P(u_i|m,c_i) \cdot P(m) \end{aligned}$

Prior P(m): determined by the LoT grammar; shorter-to-express meanings are preferred.

Recap	Formal Language Learning
00	00000000

Inference

Bayesian Learning

Introduction to Neural Networks

$$\begin{split} P(m|u_1,c_1,u_2,c_2,\ldots u_n,c_n) &\propto P(u_1,u_2,\ldots,u_n|m,c_1,\ldots,c_n) \cdot P(m) \\ &\propto \prod_{i=1}^n P(u_i|m,c_i) \cdot P(m) \end{split}$$

Prior P(m): determined by the LoT grammar; shorter-to-express meanings are preferred.

Recap	Formal Language Learning
00	00000000

Inference

Bayesian Learning

Introduction to Neural Networks

)

$$P(m|u_1, c_1, u_2, c_2, \dots, u_n, c_n) \propto P(u_1, u_2, \dots, u_n|m, c_1, \dots, c_n) \cdot P(m)$$
$$\propto \prod_{i=1}^n P(u_i|m, c_i) \cdot P(m)$$

Prior P(m): determined by the LoT grammar; shorter-to-express meanings are preferred.

Recap

Bayesian Learning

Introduction to Neural Networks

Results

Recap	Formal Langua
00	00000000

Conclusion

ge Learning of GQs

Bayesian Learning

Introduction to Neural Networks

"Likely, the unrestricted space has many hypotheses which are so implausible, they can be ignored quickly and do not affect learning. The hard part of learning, may be choosing between the plausible competitor meanings, not in weeding out a large space of potential meanings."

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Research Questions

• Does this model predict human learning curves well?

- How sensitive are the model and its results sensitive to various choices (e.g. primitives, weights, shape of likelihood function)?
- Does it say anything general about e.g. monotone and topic-neutral quantifiers?

Recap	Formal Language Learning of
00	00000000

Research Questions

- Does this model predict human learning curves well?
- How sensitive are the model and its results sensitive to various choices (e.g. primitives, weights, shape of likelihood function)?
- Does it say anything general about e.g. monotone and topic-neutral quantifiers?

Recap	Formal Language Learning of
00	00000000

Research Questions

- Does this model predict human learning curves well?
- How sensitive are the model and its results sensitive to various choices (e.g. primitives, weights, shape of likelihood function)?
- Does it say anything general about e.g. monotone and topic-neutral quantifiers?

Bayesian Learning

Introduction to Neural Networks

Outline

Formal Language Learning of GQs

3 Bayesian Learning

Introduction to Neural Networks

- NNs: Computation
- NNs: Learning
- Hands-on Example

Recap	Formal Language Lear
00	00000000

Introduction to Neural Networks

Today's Plan

- 1. Neural networks: computation
- 2. Neural networks: learning
- 3. Hands-on experiment: learning quantifiers

Goals:

- enough background and material so that you can begin playing around with your own experimental ideas by the end of today
- develop a bit of a map of the field, with pointers to where to go next

Tomorrow:

- Applied to explaining why semantic universals hold
- For quantifiers, but also in other semantic domains
- Connections with complexity and evolution

Recap	Formal Language Lear
00	00000000

Today's Plan

- 1. Neural networks: computation
- 2. Neural networks: learning
- 3. Hands-on experiment: learning quantifiers

Goals:

- enough background and material so that you can begin playing around with your own experimental ideas by the end of today
- develop a bit of a map of the field, with pointers to where to go next

Tomorrow:

- Applied to explaining why semantic universals hold
- For quantifiers, but also in other semantic domains
- Connections with complexity and evolution

Recap	Formal Language Lear
00	00000000

Today's Plan

- 1. Neural networks: computation
- 2. Neural networks: learning
- 3. Hands-on experiment: learning quantifiers

Goals:

- enough background and material so that you can begin playing around with your own experimental ideas by the end of today
- develop a bit of a map of the field, with pointers to where to go next

Tomorrow:

- Applied to explaining why semantic universals hold
- For quantifiers, but also in other semantic domains
- Connections with complexity and evolution

Recap	Formal Language Learn
00	00000000

What I'm Presupposing

Some mathematical notation/concepts from:

- Linear algebra (matrix multiplication, e.g.)
- Multivariable calculus (partial derivatives)

Some programming experience:

- Basics of Python
- Basic syntax in NumPy

But: all concepts and syntax can be explained intuitively, so please ask for clarification at all points!

Recap	Formal Language Learnin
00	00000000

What I'm Presupposing

Some mathematical notation/concepts from:

- Linear algebra (matrix multiplication, e.g.)
- Multivariable calculus (partial derivatives)

Some programming experience:

- Basics of Python
- Basic syntax in NumPy

But: all concepts and syntax can be explained intuitively, so please ask for clarification at all points!

Recap	Formal Language Learning
00	00000000

What I'm Presupposing

Some mathematical notation/concepts from:

- Linear algebra (matrix multiplication, e.g.)
- Multivariable calculus (partial derivatives)

Some programming experience:

- Basics of Python
- Basic syntax in NumPy

But: all concepts and syntax can be explained intuitively, so please ask for clarification at all points!

Recap 00	Formal Language Learning of GQs	Bayesian Learning	Introduction to Neural Networks
Tutorial			

For just these slides, plus some bonus slides, and the Jupyter Notebook: https://github.com/shanest/nn-tutorial

Bayesian Learning

Introduction to Neural Networks

Outline

.....

3 Bayesian Learning

Introduction to Neural Networks
NNs: Computation
NNs: Learning

- NINS: Learning
- Hands-on Example

Recap	Formal Language Learnir
00	00000000

Introduction to Neural Networks

Artificial Neuron

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Artificial Neuron

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Artificial Neuron

Recap	Formal Language Learning of
00	00000000

Introduction to Neural Networks

Artificial Neuron

 $\mathbf{a} = f(\mathbf{a}_0 \cdot \mathbf{w}_0 + \mathbf{a}_1 \cdot \mathbf{w}_1 + \mathbf{a}_2 \cdot \mathbf{w}_2)$

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Artificial Neuron

 $\mathbf{a} = f(\mathbf{a}_0 \cdot \mathbf{w}_0 + \mathbf{a}_1 \cdot \mathbf{w}_1 + \mathbf{a}_2 \cdot \mathbf{w}_2)$

Recap	Formal Language Learning of G
00	00000000

Introduction to Neural Networks

Activation Function

More on choosing activation functions later in the tutorial.

Computing 'and'

Bayesian Learning

Introduction to Neural Networks

р	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

	n	

Bayesian Learning

Introduction to Neural Networks

Bayesian Learning

Introduction to Neural Networks

	up	

Bayesian Learning

Introduction to Neural Networks

nan		
sup		

Bayesian Learning

Introduction to Neural Networks

ρ	c	а		
~		-	۲	

Bayesian Learning

Introduction to Neural Networks

Recap	Formal Language Learning of GQs
00	00000000

Introduction to Neural Networks

Recap	
00	

Bayesian Learning

Introduction to Neural Networks

Recap	Formal Language Le
00	000000000

Computing 'xor'

Bayesian Learning

Introduction to Neural Networks

р	q	p xor q
1	1	0
1	0	1
0	1	1
0	0	0

Recap	Formal Language Learning o
00	00000000

Introduction to Neural Networks

Computing 'xor'

Recap	Formal Language Learning of
00	00000000

Introduction to Neural Networks

Computing 'xor'

Recap	Formal Language Learning of
00	00000000

Introduction to Neural Networks

Computing 'xor'

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Computin	ng 'xor'
Recap 00	Formal Language

Bayesian Learning

Introduction to Neural Networks

20 AND 20 -30 bias

Computing	g 'xor'
Recap 00	Formal Lang

Bayesian Learning

Introduction to Neural Networks

р 20 AND 20 q -30 bias bias

	ς.	

Bayesian Learning

Introduction to Neural Networks

	02	n
110	uu	P
0	2	

Bayesian Learning

Introduction to Neural Networks

Bayesian Learning

Introduction to Neural Networks

Bayesian Learning

Introduction to Neural Networks

Bayesian Learning

Introduction to Neural Networks

Computing 'xor'

Exercise: show that the hidden units behave as labeled.

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learnin
00	00000000

Introduction to Neural Networks

Bayesian Learning

Introduction to Neural Networks

Computing Many Examples

It's often very useful to compute over a 'batch' of inputs at once. The linear combination then turns into a *matrix multiplication*:

$$\vec{a} = f \left(\begin{bmatrix} x_0^0 & x_1^0 & \cdots & x_n^n \\ x_0^1 & x_1^1 & \cdots & x_n^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_0^m & x_1^m & \cdots & x_n^m \end{bmatrix} \begin{bmatrix} w_0^0 & w_0^1 & \cdots & w_n^l \\ w_1^0 & w_1^1 & \cdots & w_n^l \\ \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^1 & \cdots & w_n^l \end{bmatrix} + \begin{bmatrix} b_0 & b_1 & \cdots & b_l \\ b_0 & b_1 & \cdots & b_l \\ \vdots & \vdots & \ddots & \vdots \\ b_0 & b_1 & \cdots & b_l \end{bmatrix} \right)$$
$$= f(xW + b)$$

• x_j^i : *j*th feature of input *i*

w¹/_k: weight from neuron k to neuron l in next layer

• *b_m*: bias to neuron *m* in next layer

Exercises:

- write down W^1 and W^2 for the xor network.
- re-write the above as f(xW) by adding a column of 1s to x and a new row to W.

Bayesian Learning

Introduction to Neural Networks

Computing Many Examples

It's often very useful to compute over a 'batch' of inputs at once. The linear combination then turns into a *matrix multiplication*:

$$\vec{a} = f \left(\begin{bmatrix} x_0^0 & x_1^0 & \cdots & x_n^n \\ x_0^1 & x_1^1 & \cdots & x_n^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_0^m & x_1^m & \cdots & x_n^m \end{bmatrix} \begin{bmatrix} w_0^0 & w_0^1 & \cdots & w_n' \\ w_1^0 & w_1^1 & \cdots & w_n' \\ \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^1 & \cdots & w_n' \end{bmatrix} + \begin{bmatrix} b_0 & b_1 & \cdots & b_l \\ b_0 & b_1 & \cdots & b_l \\ \vdots & \vdots & \ddots & \vdots \\ b_0 & b_1 & \cdots & b_l \end{bmatrix} \right)$$
$$= f(xW + b)$$

- x_j^i : *j*th feature of input *i*
- w'_k : weight from neuron k to neuron l in next layer
- *b_m*: bias to neuron *m* in next layer

Exercises:

- write down W^1 and W^2 for the xor network.
- re-write the above as f(xW) by adding a column of 1s to x and a new row to W.

Bayesian Learning

Introduction to Neural Networks

Computing Many Examples

It's often very useful to compute over a 'batch' of inputs at once. The linear combination then turns into a *matrix multiplication*:

$$\vec{a} = f \left(\begin{bmatrix} x_0^0 & x_1^0 & \cdots & x_n^n \\ x_0^1 & x_1^1 & \cdots & x_n^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_0^m & x_1^m & \cdots & x_n^m \end{bmatrix} \begin{bmatrix} w_0^0 & w_0^1 & \cdots & w_n' \\ w_1^0 & w_1^1 & \cdots & w_n' \\ \vdots & \vdots & \ddots & \vdots \\ w_n^0 & w_n^1 & \cdots & w_n' \end{bmatrix} + \begin{bmatrix} b_0 & b_1 & \cdots & b_l \\ b_0 & b_1 & \cdots & b_l \\ \vdots & \vdots & \ddots & \vdots \\ b_0 & b_1 & \cdots & b_l \end{bmatrix} \right)$$
$$= f(xW + b)$$

- x_j^i : *j*th feature of input *i*
- w_k^{\prime} : weight from neuron k to neuron l in next layer
- *b_m*: bias to neuron *m* in next layer

Exercises:

- write down W^1 and W^2 for the xor network.
- re-write the above as f(xW) by adding a column of 1s to x and a new row to W.

Recap	
00	

Bayesian Learning

Introduction to Neural Networks

Hidden Representations

Key idea: hidden layers of a neural network can encode high-level/abstract features of the input.

Bayesian Learning

Introduction to Neural Networks

Outline

2 Formal Language Learning of GQs

3 Bayesian Learning

Introduction to Neural Networks NNs: Computation

- NNs: Learning
- Hands-on Example

R	е	ca	p	
			5	

Bayesian Learning

Introduction to Neural Networks

(Supervised) Learning

Where do the weights and biases come from? They can be *learned* from data to approximate a function.

Supervised learning (will talk about others later):

- Initialize the network randomly.
- Give the network a bunch of inputs.
- Compare its outputs to the true outputs.
- Update the weights and biases to move the network's outputs closer to the true outputs.

Recap	Formal Lang
00	0000000

Bayesian Learning

(Supervised) Learning

Where do the weights and biases come from? They can be *learned* from data to approximate a function.

Supervised learning (will talk about others later):

Initialize the network randomly.

- Give the network a bunch of inputs.
- Compare its outputs to the true outputs.
- Update the weights and biases to move the network's outputs closer to the true outputs.

Recap	Formal Language Learning of G	Qs
00	00000000	

(Supervised) Learning

Where do the weights and biases come from? They can be *learned* from data to approximate a function.

Supervised learning (will talk about others later):

- Initialize the network randomly.
- Give the network a bunch of inputs.
- Compare its outputs to the true outputs.
- Update the weights and biases to move the network's outputs closer to the true outputs.

Recap	Formal Language Le
00	000000000

(Supervised) Learning

Where do the weights and biases come from? They can be *learned* from data to approximate a function.

Supervised learning (will talk about others later):

- Initialize the network randomly.
- Give the network a bunch of inputs.
- Compare its outputs to the true outputs.
- Update the weights and biases to move the network's outputs closer to the true outputs.

Recap	Formal Language Le
00	000000000

(Supervised) Learning

Where do the weights and biases come from? They can be *learned* from data to approximate a function.

Supervised learning (will talk about others later):

- Initialize the network randomly.
- Give the network a bunch of inputs.
- Compare its outputs to the true outputs.
- Update the weights and biases to move the network's outputs closer to the true outputs.

Recap	Formal Language Lea
00	000000000

(Supervised) Learning

Where do the weights and biases come from? They can be *learned* from data to approximate a function.

Supervised learning (will talk about others later):

- Initialize the network randomly.
- Give the network a bunch of inputs.
- Compare its outputs to the true outputs.
- Update the weights and biases to move the network's outputs closer to the true outputs.

Bayesian Learning

Introduction to Neural Networks

Gradient Descent: Example

Task: predict a true value y = 2.

"Model": one parameter θ , outputs $\hat{y} = \theta$. Loss function:

 $\mathcal{L}(\theta, y) = (\hat{y}(\theta) - y)^2$

75	

Bayesian Learning

Introduction to Neural Networks

Gradient Descent: Example

Task: predict a true value y = 2. "Model": one parameter θ , outputs $\hat{y} = \theta$. Loss function:

 $\mathcal{L}(\theta, y) = (\hat{y}(\theta) - y)^2$

Recap	
00	

Bayesian Learning

Introduction to Neural Networks

Gradient Descent: Example

Task: predict a true value y = 2. "Model": one parameter θ , outputs $\hat{y} = \theta$. Loss function:

 $\mathcal{L}(\theta, \mathbf{y}) = (\hat{\mathbf{y}}(\theta) - \mathbf{y})^2$

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learning
00	00000000

Bayesian L

Introduction to Neural Networks

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learnin
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learnin
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learnin
00	00000000

Introduction to Neural Networks

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Recap	Formal Langua
00	00000000

Bayesian Learning

Gradient Descent for NNs

A neural network computes a complex function of its input. For an *L*-layer feed-forward network:

$$\hat{y}(x) = f_L(f_{L-1}(\cdots f_2(f_1(xW^1 + b^1)W^2 + b^2)\cdots)W^L + b^L)$$

All of the weights and biases form a long vector of parameters θ . So instead of a partial derivative, we take a *gradient*:

$$abla_{ heta}\mathcal{L}(\hat{y}(heta), y) = \left\langle rac{\partial}{\partial heta_1} \mathcal{L}, \dots, rac{\partial}{\partial heta_N} \mathcal{L}
ight
angle$$

The (negative) gradient tells us *which direction in 'parameter space'* to walk in order to make the loss (\mathcal{L}) smaller, i.e. to make the network's output closer to the true output.

Recap	Formal Language Lea
00	000000000

Gradient Descent for NNs

A neural network computes a complex function of its input. For an *L*-layer feed-forward network:

$$\hat{y}(x) = f_L(f_{L-1}(\cdots f_2(f_1(xW^1 + b^1)W^2 + b^2)\cdots)W^L + b^L)$$

All of the weights and biases form a long vector of parameters θ . So instead of a partial derivative, we take a *gradient*:

$$abla_{ heta}\mathcal{L}(\hat{\mathbf{y}}(heta),\mathbf{y}) = \left\langle rac{\partial}{\partial heta_1}\mathcal{L},\ldots,rac{\partial}{\partial heta_N}\mathcal{L}
ight
angle$$

The (negative) gradient tells us *which direction in 'parameter space'* to walk in order to make the loss (\mathcal{L}) smaller, i.e. to make the network's output closer to the true output.
Recap	Formal Language Lea
00	000000000

Gradient Descent for NNs

A neural network computes a complex function of its input. For an *L*-layer feed-forward network:

$$\hat{y}(x) = f_L(f_{L-1}(\cdots f_2(f_1(xW^1 + b^1)W^2 + b^2)\cdots)W^L + b^L)$$

All of the weights and biases form a long vector of parameters θ . So instead of a partial derivative, we take a *gradient*:

$$abla_{ heta}\mathcal{L}(\hat{\mathbf{y}}(heta),\mathbf{y}) = \left\langle rac{\partial}{\partial heta_1}\mathcal{L},\ldots,rac{\partial}{\partial heta_N}\mathcal{L}
ight
angle$$

The (negative) gradient tells us *which direction in 'parameter space'* to walk in order to make the loss (\mathcal{L}) smaller, i.e. to make the network's output closer to the true output.

Recap	Formal Language Learning
00	00000000

Introduction to Neural Networks

Activation Functions

Activation	Functions
Recap OO	Formal Language Learning

Introduction to Neural Networks

Recap 00	Formal Language Learning of GQs	Bayesian Learning	Introduction to Neura
Activa	tion Functions		

ReLUs are incredibly popular at the moment, as are refinements: softplus, leaky ReLU, exponential linear (ELU), gaussian linear (GLU), ...

Glorot, Bordes, and Bengio 2011; Hahnioser, Sarpeshkar, Mahowald, Douglas, and Seung 2000

I Networks

Bayesian Learning

Introduction to Neural Networks

Loss Functions

Regression: different kinds of geometrical distances, e.g.

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Classification: *cross entropy*:

$$\ell(\hat{y},y) = -\sum y_i \cdot \ln(\hat{y}_i) = -\ln(\hat{y}_{ ext{true class}})$$

		~

Bayesian Learning

Introduction to Neural Networks

Loss Functions

Regression: different kinds of geometrical distances, e.g.

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Classification: *cross entropy*:

$$\ell(\hat{y},y) = -\sum y_i \cdot \mathsf{ln}(\hat{y}_i) = - \,\mathsf{ln}(\hat{y}_{\mathsf{true\ class}})$$

Bayesian Learning

Introduction to Neural Networks

Loss Functions

Regression: different kinds of geometrical distances, e.g.

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Classification: *cross entropy*:

$$\ell(\hat{y},y) = -\sum y_i \cdot \mathsf{ln}(\hat{y}_i) = - \,\mathsf{ln}(\hat{y}_{\mathsf{true\ class}})$$

Recap

Formal Language Learning of GQs

Bayesian Learning

Introduction to Neural Networks

Example of Learned Hidden Layers

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Olah, Mordvintsev, and Schubert 2017; Yosinski, Clune, Bengio, and Lipson 2014 https://distill.pub/2017/feature-visualization/

Recap	Formal Language Lea
00	000000000

Introduction to Neural Networks

Learned Representations

Key idea: a neural network can learn *which* high-level/abstract features of the input are useful in helping it solve its task. (Features are learned, instead of engineered by us.)

Bayesian Learning

Introduction to Neural Networks

Outline

2 Formal Language Learning of GQs

3 Bayesian Learning

Introduction to Neural Networks

- NNs: Computation
- NNs: Learning
- Hands-on Example

		n	
1 10		ų	
	\cap		

Bayesian Learning

Introduction to Neural Networks

Anatomy of a DL Experiment

(1) Specify parameters

- (2) Build data input/generation pipeline
 - Train/test split [dev as well; more later]
- (3) Build model
- (4) Train the model!
 - (a) Evaluate at regular intervals
 - (b) Measure your variables of interest
 - (c) Monitor train/test loss
 - (d) Early stopping [later in tutorial]
- (5) Analysis
 - quantitative
 - qualitative behavior

		2
5	괴	9

Bayesian Learning

Introduction to Neural Networks

Anatomy of a DL Experiment

- (1) Specify parameters
- (2) Build data input/generation pipeline
 - Train/test split [dev as well; more later]
- (3) Build model
- (4) Train the model!
 - (a) Evaluate at regular intervals
 - (b) Measure your variables of interest
 - (c) Monitor train/test loss
 - (d) Early stopping [later in tutorial]
- (5) Analysis
 - quantitative
 - qualitative behavior

		2
5	괴	9

Bayesian Learning

Introduction to Neural Networks

Anatomy of a DL Experiment

- (1) Specify parameters
- (2) Build data input/generation pipeline
 - Train/test split [dev as well; more later]
- (3) Build model
- (4) Train the model!
 - (a) Evaluate at regular intervals
 - (b) Measure your variables of interest
 - (c) Monitor train/test loss
 - (d) Early stopping [later in tutorial]
- (5) Analysis
 - quantitative
 - qualitative behavior

Bayesian Learning

Introduction to Neural Networks

Anatomy of a DL Experiment

- (1) Specify parameters
- (2) Build data input/generation pipeline
 - Train/test split [dev as well; more later]
- (3) Build model
- (4) Train the model!
 - (a) Evaluate at regular intervals
 - (b) Measure your variables of interest
 - (c) Monitor train/test loss
 - (d) Early stopping [later in tutorial]
- (5) Analysis
 - quantitative
 - qualitative behavior

iccup	0	02	n
			Ρ

Bayesian Learning

Introduction to Neural Networks

Anatomy of a DL Experiment

- (1) Specify parameters
- (2) Build data input/generation pipeline
 - Train/test split [dev as well; more later]
- (3) Build model
- (4) Train the model!
 - (a) Evaluate at regular intervals
 - (b) Measure your variables of interest
 - (c) Monitor train/test loss
 - (d) Early stopping [later in tutorial]
- (5) Analysis
 - quantitative
 - qualitative behavior

iccup	0	02	n
			Ρ

Bayesian Learning

Introduction to Neural Networks

Anatomy of a DL Experiment

- (1) Specify parameters
- (2) Build data input/generation pipeline
 - Train/test split [dev as well; more later]
- (3) Build model
- (4) Train the model!
 - (a) Evaluate at regular intervals
 - (b) Measure your variables of interest
 - (c) Monitor train/test loss
 - (d) Early stopping [later in tutorial]
- (5) Analysis
 - quantitative
 - qualitative behavior
- NOTE: keep detailed records about what you're doing!

For guidance on keeping records and writing up results, see these lecture notes from Sam Bowman.

Recap	Formal Language Learn
00	00000000

To the code!

Bayesian Learning

Introduction to Neural Networks

https://github.com/shanest/nn-tutorial/blob/master/tutorial.ipynb