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Recap

Yesterday:
Formal learning theory: universals don’t help
Bayesian learning: restriction via conservativity doesn’t help
Intro to neural networks

Today:
Walk through the tutorial notebook
Apply neural learning to quantifiers (and responsive predicates
and color terms)
How learnability relates to evolution and complexity
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Explaining Universals

Natural Question
Why do the attested universals hold?

Answer 1: learnability (as fencing-in; to be rejected).
(Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

The universals greatly restrict the search space that a language
learner must explore when learning the meanings of expressions.
This makes it easier (possible?) for them to learn such meanings
from relatively small input.

Compare: Poverty of the Stimulus argument for UG. (Chomsky 1980;
Pullum and Scholz 2002)
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Explaining Universals

Natural Question
Why do the attested universals hold?

Answer 1: learnability (as fencing-in; to be rejected).
(Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Answer must in a sense be true, but:
Restriction may not help much. (Steven T Piantadosi,
Tenenbaum, and Goodman 2013)
Does not explain which universals are attested.
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Explaining Universals

Natural Question
Why do the attested universals hold?

Answer 2: learnability (as temperature).
(hints in van Benthem 1987; Peters and Westerståhl 2006)

Universals aid learnability because expressions satisfying the
universals are easier to learn than those that do not.
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To the code!

https://github.com/shanest/nn-tutorial/blob/master/tutorial.ipynb
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RNNs
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Long Short-Term Memory Network
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Quantifier Input

∈ A? ∈ B? xi

o1 X X
[
1 0 0 0 0 1

]
o2 X x

[
0 1 0 0 0 1

]
o3 x X

[
0 0 1 0 0 1

]
o4 X X

[
1 0 0 0 0 1

]
o5 x x

[
0 0 0 1 0 1

]
xi : i th input to LSTM

First four dimensions: where in the model is oi

Last two dimensions: label for quantifier.
Quantifiers: ‘every’ and ‘some’ (two total)
This example: Q = ‘some’

True label y =
[
1 0

]
, because sentence is True.
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Monotonicity

Many Amsterdammers ride an omafiets to work.
⇒ Many Amsterdammers ride a bike to work.

So: ‘many’ is upward monotone.
Few Amsterdammers ride a bike to work.
⇒ Few Amsterdammers ride an omafiets to work.

So: ‘few’ is downward monotone.
At least 6 or at most 2 Amsterdammers ride an omafiets to work.
6⇒ (and 6⇐) At least 6 or at most 2 Amsterdammers ride a bike to
work.

So: ‘at least 6 or at most 2’ is not monotone.
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Monotonicity Universal

Monotonicity Universal

All simple determiners are monotone.
(Barwise and Cooper 1981)
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Monotonicity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Monotonicity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Quantity

At least three buildings at Science Park are blue.
There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
⇒ At least three buildings on El Camino Real are blue.

So: ‘at least three’ is quantitative.
The first three buildings at Science Park are blue.
There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
6⇒ The first three buildings on El Camino Real are blue.

So: ‘the first three’ is not quantitative.
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Quantity Universal

Q is quantitative:
if 〈M,A,B, . . . 〉 ∈ Q and A ∩ B,A \ B,B \ A,M \ (A ∪ B) have the
same cardinality (size) as their primed-counterparts, then
〈M ′,A′,B′, . . . 〉 ∈ Q

Quantity Universal

All simple determiners are quantitative.
(Keenan and Stavi 1986; Peters and Westerståhl 2006)
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Quantity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Quantity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Conservativity

Many Amsterdammers ride an omafiets to work.
≡ Many Amsterdammers are Amsterdammers who ride an
omafiets to work.

So: ‘many’ is conservative.
Only Amsterdammers ride an omafiets to work.
6≡ Only Amsterdammers are Amsterdammers who ride an
omafiets to work.

So: ‘only’ is not conservative.
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Conservativity Universal

All simple determiners are conservative.
(Barwise and Cooper 1981; Keenan and Stavi 1986)
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Conservativity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Conservativity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Conservativity: Discussion

The data generation does not ‘break the symmetry’ between
A \ B and B \ A.
Conservativity may be a syntactic/structural constraint, not a
constraint on the lexicon.
[See Fox 2002; Romoli 2015; Sportiche 2005, summarized
Appendix to these slides]
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Quantifiers: Summary

D〈et,〈et,t〉〉

monotonequantitative
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Types of Clause-Embedding Predicates

Carlos believes that Amsterdam is the capital of the
Netherlands.
# Carlos believes where Amsterdam is.
# Carlos wonders that Amsterdam is the capital of the
Netherlands.
Carlos wonders where Amsterdam is.
Carlos knows that Amsterdam is the capital of the
Netherlands.
Carlos knows where Amsterdam is.
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Types of Predicates

type declarative interrogative example

rogative x X ‘wonder’
anti-rogative X x ‘believe’
responsive X X ‘know’

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018
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Veridicality

Maria knows that the canal has 7 bridges.
 The canal has 7 bridges.

So: ‘know’ is veridical with respect to declarative complements.
Maria knows how many bridges the canal has.
The canal has 7 bridges.
 Maria knows that the canal has 7 bridges.

So: ‘know’ is veridical with respect to interrogative complements.
So: ‘know’ is veridically uniform.
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Veridicality

Maria is certain that the canal has 7 bridges.
6 The canal has 7 bridges.

So: ‘be certain’ is not veridical with respect to declarative
complements.

Maria is certain about how many bridges the canal has.
The canal has 7 bridges.
6 Maria is certain that the canal has 7 bridges.

So: ‘be certain’ is not veridical with respect to interrogative
complements.
So: ‘be certain’ is veridically uniform.
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The Veridical Uniformity Thesis

Veridical Uniformity Universal

All responsive predicates are veridically uniform.
(Spector and Egré 2015; Theiler, Roelofsen, and Aloni 2018)
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Four Responsive Predicates

Veridical
Predicate Lexical Entry: λPT .λp〈s,t〉.λae.∀w ∈ p : . . . Declarative Interrogative

know w ∈ DOXa
w ∈ P X X

wondows w ∈ DOXa
w ⊆ info(P) and DOXa

w ∩ q 6= ∅ ∀q ∈ alt(P) X x
knopinion w ∈ DOXa

w and (DOXa
w ∈ P or DOXa

w ∈ ¬¬P) x X
be certain DOXa

w ∈ P x x

Table: Four predicates, exemplifying the possible profiles of veridicality.

The semantics are given in terms of inquisitive semantics (Ciardelli,
Groenendijk, and Roelofsen 2018).
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Responsive Predicate Input

Suppose W = {w1,w2,w3}, and we are considering an example with
Q = {{w1} , {w2,w3}}.

world encoded

w1
[
1 0 0

]
w2

[
0 1 1

]
w3

[
0 1 1

]
We concatenate all of the following together:

Encoding of each world
A label for the predicate (e.g.

[
0 1 0 0

]
)

A label for the world of evaluation (e.g.
[
0 0 1

]
)

A vector (length |W |) for DOXa
w (e.g.

[
0 1 1

]
)
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Veridical Uniformity: Results

Shane Steinert-Threlkeld, “An Explanation of the Veridical Uniformity Universal”, in
Journal of Semantics.
Code and data: https://github.com/shanest/responsive-verbs.
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Responsive Predicates: Summary

Dresponsive

veridically uniform
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The Order of Color Terms

Berlin and Kay 1969; E. Gibson, Futrell, Jara-Ettinger, Mahowald,
Bergen, Ratnasingam, M. Gibson, Steven T. Piantadosi, and Conway

2017; Regier, Kay, and Khetarpal 2007
https://www.vox.com/videos/2017/5/16/15646500/color-pattern-language
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Convexity

While natural languages vary in how many color terms they have and
which specific colors are denoted, it seems that all color terms denote
very ‘well-behaved’ regions of color space.

X is convex just in case if x , y ∈ X , then for every t ∈ (0,1),

tx + (1− t)y ∈ X
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Convexity universal

Convexity Universal

All color terms denote convex regions of color space.
(Gärdenfors 2014; Jäger 2010)
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Partitioning CIE-L*a*b* Space
We generated 300 artificial color-naming systems by partitioning the CIELab color
space into distinct categories. CIELab approximates human color vision. It is
perceptually uniform, meaning that the distance in the space corresponds well with the
visually perceived color change.
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Example Partitions of 2D space
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Degree of convexity

We measured the degree of convexity as the (weighted) average area
of the convex hull of each color that is covered by that color.
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Convexity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, Cognition.
Code and data: https://github.com/shanest/color-learning.

44



Introduction Quantifiers Other Cases Evolution Complexity Conclusion

Convexity: Commonality Analysis

Variable R2 ∆R2

conn 0.180 0.0003
smooth 0.008 0.0365

degree of convexity 0.505 0.3726
conn · smooth 0.054 0.0019

min size 0.014 0.0000
max size 0.001 0.0000

median size 0.000 0.0007
min / max 0.043 0.0014
max − min 0.000 0.0000

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, Cognition.
Code and data: https://github.com/shanest/color-learning.
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Controlling for Linear Separability

Variable R2 ∆R2

degree of convexity 0.505 0.1288
linear separability 0.418 0.0005

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, Cognition.
Code and data: https://github.com/shanest/color-learning.
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Cluster Analysis

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, Cognition.
Code and data: https://github.com/shanest/color-learning.

47



Introduction Quantifiers Other Cases Evolution Complexity Conclusion

Colors: Summary

Dcolor

convex
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Interim Summary

Ease of learning, measured as the speed of convergence of NNs, can
explain the presence of linguistic universals in various semantic
domains, including both function and content words.

Can the observed linguistic structure be explained by the
learnability bias?
Are there other / ‘better’ explanations?
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The Problem of Linkage (Kirby 1999)

Monotone
quantifiers are
easier to learn.

=⇒
???

Natural language
quantifiers are
monotone.
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Transmission
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Iterated Learning

Kirby, Griffiths, and Smith 2014
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Degree of Monotonicity: Intuition

Intuitively, quantifiers can be more or less monotone.

-
- +

- +
- +

- +
... ...

Information theoretically: how much information about the quantifier
is provided by which models have true sub-models?
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Degree of Monotonicity: Intuition

Intuitively, quantifiers can be more or less monotone.

-
- +

- + +
- + + +

- + + + +
... ...

at least n

Information theoretically: how much information about the quantifier
is provided by which models have true sub-models?
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Degree of Monotonicity: Intuition

Intuitively, quantifiers can be more or less monotone.

-
- +

- + +
- + + -

- + + - -
... ...

at least n ≺ between m and n

Information theoretically: how much information about the quantifier
is provided by which models have true sub-models?

54



Introduction Quantifiers Other Cases Evolution Complexity Conclusion

Degree of Monotonicity: Intuition

Intuitively, quantifiers can be more or less monotone.

-
- +

- + -
- + - +

- + - + -
... ...

at least n ≺ between m and n ≺ an odd number of

Information theoretically: how much information about the quantifier
is provided by which models have true sub-models?
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Degree of Monotonicity: Definition

Binary random variables:
1Q : the truth-value of quantifier Q
1≺Q : whether a model has a true sub-model

Mutual Information:

I(1Q ; 1≺Q ) := H(1Q)− H(1Q |1≺Q )

Degree of monotonicity:

mon(Q) :=
I(1Q ; 1≺Q )

H(1Q)

=
H(1Q)− H(1Q |1≺Q )

H(1Q)

= 1−
H(1Q | 1≺Q )

H(1Q)
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Degree of Monotonicity: Examples

at least n: 1
between 3 and 5: 0.752
an even number of: 0.001
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Degree of Monotonicity: Distribution
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Degrees of Monotonicity and Learnability

Zi Long Zhu, “Machine learning and semantic universals”, BSc Informatica thesis
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Degrees of Monotonicity and Learnability

Zi Long Zhu, “Machine learning and semantic universals”, BSc Informatica thesis
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Results
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Fausto Carcassi, Shane Steinert-Threlkeld, and Jakub Szymanik, “Monotone Quatifiers
Emerge via Iterated Learning”, Cognitive Science.
Code and data: https://github.com/thelogicalgrammar/NeuralNetIteratedQuantifiers
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Learnability and Complexity

Learnability can explain the presence of universals.
But is it the only (or the best) such explanation?
A natural idea: some notion of complexity explains both the
universals and the learnability facts.
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What’s the right measure of complexity?

Previous attempts fail to capture the distinctions:
Automata theory (van Benthem 1986)
Computational complexity (Szymanik 2016)
Formal learning theory (Gierasimczuk 2007, 2009; Tiede
1999)

Let’s try: information-theoretic perspective on GQs.
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(Approximate) Kolmogorov Complexity

K (x)—the length of the shortest program p that outputs x
The drawback: K is uncomputable
LZ (x)—Lempel-Ziv is a tractable approximation of K
Recent applications: Dingle, Camargo, and Louis 2018; Feldman
2016; Valle-Pérez, Camargo, and Louis 2019
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Method

Idea: universals induce regularity/structure in the distribution of truth
values across models, which aid compressibility.
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LZ Results: Monotonicity

Iris van de Pol, Paul Lodder, Leendert van Maanen, Shane Steinert-Threlkeld, Jakub
Szymanik, “Quantifiers satisfying semantic universals have shorter minimal description
length”, Cognition.
Code and data: https://tinyurl.com/quantifierLZ
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LZ Results: Quantity

Iris van de Pol, Paul Lodder, Leendert van Maanen, Shane Steinert-Threlkeld, Jakub
Szymanik, “Quantifiers satisfying semantic universals have shorter minimal description
length”, Cognition.
Code and data: https://tinyurl.com/quantifierLZ
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LZ Results: Conservativity

Iris van de Pol, Paul Lodder, Leendert van Maanen, Shane Steinert-Threlkeld, Jakub
Szymanik, “Quantifiers satisfying semantic universals have shorter minimal description
length”, Cognition.
Code and data: https://tinyurl.com/quantifierLZ
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Scaling Up Complexity Results

Moving beyond the minimal pair methodology:
Generate a large body of quantifiers using a LoT grammar
Measure: LZ, minimum expression length (as yesterday), all
three universals
Logistic regressions to predict presence/absence of each
universal on the basis of complexity
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LZ Scaled Results

Iris van de Pol, Paul Lodder, Leendert van Maanen, Shane Steinert-Threlkeld, Jakub
Szymanik, “Quantifiers satisfying semantic universals have shorter minimal description
length”, Cognition.
Code and data: https://tinyurl.com/quantifierLZ
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Minimum Expression Length Scaled Results

Iris van de Pol, Paul Lodder, Leendert van Maanen, Shane Steinert-Threlkeld, Jakub
Szymanik, “Quantifiers satisfying semantic universals have shorter minimal description
length”, Cognition.
Code and data: https://tinyurl.com/quantifierLZ
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Complexity: Conclusions

Does complexity provide an independent explanation for the
universals?
LZ: monotonicity patterns the same as learnability, but Quantity
and Conservativity are different.
MEL: all three properties correlate well with complexity
Much more work to be done: which properties are robust with
respect to ‘most’ measures, learnability at scale as well
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Explaining Universals

Why do semantic universals arise?

(I) Because expressions satisfying them are easier to learn.
(II) And languages tend to lexicalize easier-to-learn expressions.

We provided evidence for (I) by training neural networks to learn
expressions from three very different linguistic domains, spanning
function and content words: quantifiers, responsive predicates, and
color terms.

For (II), combining iterated learning with neural network agents leads
to the emergence of monotone quantifiers.
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Future Directions

More universals from more domains.
‘Scaling up’ the computational experiments, e.g.,
Does CONS arise from a biased linguistic distribution?
Mhasawade, Szabó, Tosik, and Wang 2018: NO
IL: more realistic quantifiers, other case studies, full typological
picture
Simplicity-informativeness trade-off:

Quantifiers (Steinert-Threlkeld 2021)
Indefinites (Denić, Steinert-Threlkeld, Szymanik 2022)
Modals (Imel, Steinert-Threlkeld 2022)

. . .
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Tomorrow

(1) But what about human learning and development?
(2) Are the universals really cross-linguistically valid?
(3) Discussion
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Confusion Matrices

all know be-certain knopinion wondows
label 1 0 1 0 1 0 1 0 1 0

1 15412.2 1176.4 3881.1 261.7 3878.5 240.8 3843.0 349.2 3809.6 324.7
0 587.8 14823.7 118.9 3738.3 121.6 3759.2 156.9 3650.9 190.4 3675.3

Table: Average confusion matrix across all 60 trials, in total and by verb. The
rows are predicted truth-value, and the columns the actual truth value.
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Distributions by Verb

Figure: Distributions (Gaussian kernel density estimates) of the true/false
positives/negatives by verb.
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Accuracy by Semantic Properties of Input

factor value know be-certain knopinion wondows

complement declarative 0.983 0.986 0.954 0.983
interrogative 0.923 0.924 0.921 0.841

w ∈ DOXa
w

1 0.964 0.957 0.954 0.947
0 0.919 0.953 0.887 0.924

DOXa
w ∈ P 1 0.961 0.966 0.949 0.947

0 0.945 0.943 0.929 0.922

Table: Accuracy by verb and various semantic features of the input,
aggregated across all trials.
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The Core Idea

Conservativity, neutrally stated: every sentence of the form “D NP
VP” is truth-conditionally equivalent to “D NP is an NP that VP”.

Structural Conservativity: every sentence of the form “D NP VP” is
truth-conditionally equivalent to f (JNPK)(JVPK) for some conservative
function f , whether or not D denotes a conservative quantifier.
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Movement à la Heim & Kratzer

Shane likes every waterfall.

S

DP

every waterfall
1 S

Shane VP

likes t1

Every waterfall is such that it is liked by Shane.
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Movement as copying

Shane likes every waterfall.

S

DP

every waterfall
1 S

Shane VP

likes

every waterfall1

Every waterfall is such that it is a waterfall liked by Shane.
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Movement Without Type Mismatch

Every waterfall is tall.

Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

S

DP

every waterfall
1 VP

every waterfall1

is tall

Every waterfall is such that it is a waterfall that is tall.
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Worked Example

Consider a hypothetical non-conservative determiner ‘equi’:

JequiK = {〈M,A,B〉 : A = B}

With (i) copy theory of movement and (ii) VP-internal subjects:

‘Equi French people smoke cigarettes’ is true iff:

JFrench peopleK = JFrench peopleK ∩ Jsmoke cigarettesK

This is equivalent to: ‘All French people smoke cigarettes’!
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Algorithm for Generating Color Systems

Algorithm 1 Generate an artificial color system
Parameters: temp (t), conn (c), initial ball size (b)
Inputs: a set X , distance measure d , number of categories N

UNLABELED ← X ; LABELEDi ← ∅ (∀i ∈ {1, . . . ,N})
Choose x1, . . . , xN uniformly at random from X
for i = 1, . . . ,N do

LABELEDi += xi ; pop(xi , UNLABELED)
for all x ∈ NearestNeighbors(xi ,b) do

LABELEDi += x ; pop(x , UNLABELED)
end for

end for
while UNLABELED 6= ∅ do

di ← 1/(minx ′∈LABELEDi d(x , x ′))1/4

pi ← edi/t/
∑

j edj/t

Choose label i with probability pi
LABELEDi += x ; pop(x , UNLABELED)

end while
for i = 1, . . . ,N, ordered by increasing size of LABELEDi do

Mi ← ConvexHull(LABELEDi ) \ LABELEDi
Ri ← ClosestPoints(Mi , LABELEDi , c · |Mi |)
for all x ∈ Ri do

LABELEDi += x ; pop(x ,cell(x))
end for

end for
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