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Abstract

We present a natural logic for reasoning with quanti-
fiers that can predict human performance in appro-
priate reasoning tasks. The model is an extension of
that in (Geurts, 2003) but allows for better fit with
data on syllogistic reasoning and is extended to ac-
count for reasoning with iterated quantifiers. We
assign weights to inference rules and operationalize
the complexity of a reasoning pattern as weighted
length of proof in our logic – this results in a measure
of complexity that outperforms other models in their
predictive capacity and allows for the derivation of
empirically testable hypotheses.
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Of Logic and Reasoning
Logic and psychology can look back on a shared
history that is full of twists and turns, with the two
moving back and forth on their commitment to one
another. Recently, some researchers proclaimed the
time of logic in psychology to be over (Evans, 2002)
while others argue that most of such criticism can
be traced back to an uncalled-for equalization of
logic with ”standard logic“, an umbrella-term for
both predicate calculus and propositional logic.1.A
prominent example is Wason’s infamous selection
task, in which, if propositional logic is taken to be the
adequate normative standard for human reasoning,
only 5% of all participants manage to solve their
task properly (Wason, 1983). But ”the unargued
adoption of classical logic as criterion of correct
performance is thoroughly antilogical“ (Stenning &
van Lambalgen, 2012, 45). Fortunately, there are
other alternatives. Braine (1978) already brought
forward a natural logic with a directional entailment

1Researchers are often in effect equating the both:
”...standard logic, which mental logic and mental mod-
els assume to be normative...“ (Oaksford & Chater, 2001,
349).

relation that accounts for Wason’s results. Natural
logics, a collection of various logical formalisms,
emphasize the fact that some important and recurring
natural language expressions are not only carriers
of information but allow for reasoning, see, e.g.,
Icard III and Moss (2014).

The phenomenon of reasoning that caught our eye
is that of inferences with quantifiers, e.g. ALL, NO,
and MOST and their iterations, e.g. in ”MOST pigeons
annoyed AT LEAST THREE tourists“. If Q(A,B) is a
quantifier, we can usually define it by only referring
to the two sets A and B:

ALL(A,B)⇔ A⊆ B
SOME(A,B)⇔ A∩B 6= /0

MOST(A,B)⇔ |A∩B|> |A−B|
MORE THAN 2(A,B)⇔ |A∩B|> 2

We will refine and extend a natural logic proposed
by Geurts (2003) that captures the essential infer-
ential properties of single and iterated quantifiers.
At the semantic center of our logic is the notion of
monotonicity. Consider the following example:

(i) All flowers are vermilion. (ALL(F,V ))
(ii) No flowers are red. (NO(F,R))

Sentence (i) entails ”All flowers are red“ (ALL(F,R))
while (ii) entails ”No flowers are vermilion“
(NO(F,V )) because the set of all vermilion things
is a subset of all red things (ALL(V,R)). We will usu-
ally say that the quantifiers ALL and NO are right-side
upward monotone and right-side downward mono-
tone, respectively, or just speak of their directionality.
This kind of inference can be generalized to iter-
ated quantifiers: we can infer that ”MOST pigeons
annoyed AT LEAST THREE humans“ from ”MOST
pigeons annoyed AT LEAST THREE tourists“ because
we know that the set of all tourists is contained in
the set of all humans.



As logics tend to do, this has some normative
import: a logic often defines some inferences as
good (see the examples above) and others implicitly
as bad. We claim that it is possible to find a measure
of complexity in a natural logic that aligns with the
variation in cognitive difficulty that is observed in
experiments, operationalized as mean success rate,
thereby carrying our logic beyond notions of good
and bad.

Reasoning with Quantifiers
For one who is not familiar with their centuries-
old notation of Syllogisms, it must seem extremely
cumbersome. We will thus stick to examples and
keep our treatment of syllogisms as short as pos-
sible, though a proper introduction can be found
in Khemlani and Johnson-Laird (2012). The syllo-
gistic fragment is a natural language fragment that
builds around inferences using the quantifiers EV-
ERY, SOME, NO, and NOT ALL. Syllogisms consist
of three quantified sentences (two premises and one
conclusion) and three variables A, B, and C. Some-
what surprisingly, psychological studies that are con-
cerned with human reasoning using quantifiers are
more often than not restricted to syllogistic reasoning
(results are assembled, for instance, in a meta-study
by Chater and Oaksford (1999)). For i∈ {1,2,3}, let
Qi be any of the four quantifiers above. We consider
four variable configurations:

Q1(B,C) Q1(C,B) Q1(B,C) Q1(C,B)
Q2(A,B) Q2(A,B) Q2(B,A) Q2(B,A)
Q3(A,C) Q3(A,C) Q3(A,C) Q3(A,C)

All combinations of quantifiers and variables con-
sidered, we end up with 256 possible syllogisms,
most of which are not good inferences in any sense
of the word, where the definition of good varies
across different cognitive models. Khemlani and
Johnson-Laird (2012) however note, that there are
512 syllogisms, if one allows conclusions of the form
Q3(C,A) (as it was done in scholastic logic). Case
in point are the two syllogisms below:

ALL(C,B) ALL(C,B)
ALL(B,A) ALL(B,A)
SOME(A,C) ALL(C,A)

The ”Aristotelian“ one on the left-hand side
with its restriction on the form of the conclusion is

endorsed much less by participants in experiments
than its counterpart on the right (Khemlani &
Johnson-Laird, 2012) – a fact that our model will
later offer an explanatory account for. Syllogistic
reasoning patterns are readily extended to reasoning
with other quantifiers, such as MOST, that are
beyond first order logic. The results of Chater &
Oaksford’s meta-study unsurprisingly show that
some good inferences are easier than others. We
will henceforth refer to this as the cognitive difficulty
of an inference (mean success rate in experimental
settings). But syllogisms is not all there is to
reasoning with quantifiers: Geurts and van der
Silk (2005) did an experiment on reasoning with
iterated quantifiers investigating how their combined
monotonicity properties interact with the cognitive
difficulty of inferences. Participants in their study
had to determine whether reasoning patterns of the
form

QA A played against QB B.
All B were C. / All C were B.
QA A played against QB C.

were valid or not with QA ∈ {EVERY, MOST,
AT LEAST, SOME, AT MOST, NO} and QB ∈ {MORE
THAN, FEWER THAN} and only one of the two
possibilities of the minor premise (second line)
present. These inferences are exclusively concerned
with the monotonicity-properties of the second
argument.

Monotonicity and Symmetry
We have seen examples of monotonicity above.
While quantifiers can be increasing in one of the
arguments and being decreasing in the other, some,
like MOST and TWO, do not show monotonicity
properties on either side. To capture this variation,
we will henceforth talk about a quantifier’s mono-
tonicity profile. As an example, instead of stating
that Q is left-side downward monotone and right-
side upward monotone, we will say that its mono-
tonicity profile is ↓↑ or write ↓ Q ↑. The lack of
monotonicity-properties on either side will be indi-
cated by a dot. Examples are ↓ ALL ↑, ↑ SOME ↑,
↓ NO ↓, ↑ NOT ALL ↓, ·MOST ↑.

Another property of quantifiers that allows for
inferences is symmetry. A quantifier Q is called sym-



metric if and only if, for all A and B, Q(A,B) implies
Q(B,A). The inference associated with this prop-
erty is called conversion: if SOME pigeons are birds,
then SOME birds are pigeons - whereas the same
inference is clearly not good for the quantifier ALL.
Let us now quickly look at iterated quantifiers. We
can extend the notion above to combinatorial mono-
tonicity profiles (CMP). So, for example, ↓ Q1,Q2 ↑
means that the iteration of Q1 and Q2 puts their first
argument in a downward entailing position and their
second argument in an upward entailing position.
The interaction between the monotonicity properties
of single quantifiers is thus reminiscent of how sub-
traction and addition interact in arithmetics2 Thus,
if Q1 is right-side downward entailing, this reverses
the direction of entailment of the second quantifier
- a downward entailing first quantifier switches the
directionality of the second.

Reasoning with Quantifiers
It is now time to present our natural logic for
reasoning with quantifiers. The following inference
rules allow for proving all syllogisms that are valid
in predicate calculus and / or Aristotelian logic, see
Sippel (2017) for details.

Mon↑ Q ↑ (A,B)
ALL(B,C)
Q ↑ (A,C)

Mon↓ Q ↓ (A,B)
ALL(C,B)
Q ↓ (A,C)

↑Mon
↑ Q(A,B)
ALL(A,C)
↑ Q(C,B)

↓Mon
↓ Q(A,B)
ALL(C,A)
↓ Q(C,B)

Conv Qs(A,B)
Qs(B,A)

pConv NO(A,B)
ALL NOT(A,B)

exImp ALL(A,B)
SOME(A,B)

Where Qs denotes any symmetric quantifier
(NO, SOME, all cardinal quantifiers, etc.) and
all quantifiers have the indicated monotonicity

2In Sippel (2017), we show that this scheme is re-
stricted to the quantifiers used in Geurts and van der Silk
(2005). While all iterated quantifiers have clear mono-
tonicity properties, they do just not generally follow this
simple interaction system.

properties. With the generality in quantifier assign-
ment and the rules ↓Mon and ↑Mon, this already
extends beyond Geurts’ model. The following
inference rules account for the reasoning task with
iterated quantifiers in Geurts and van der Silk (2005).

Mon↑↑
Q ↑ QM ↑ φ(A,B)
ALL(B,C)
Q ↑ QM ↑ φ(A,C)

Mon↑↓
Q ↑ QF ↓ φ(A,B)
ALL(C,B)
Q ↑ QF ↓ φ(A,C)

Mon↓↑
Q ↓ QM ↑ φ(A,B)
ALL(C,B)
Q ↓ QM ↑ φ(A,C)

Mon↓↓
Q ↓ QF ↓ φ(A,B)
ALL(B,C)
Q ↓ QF ↓ φ(A,C)

Where Q is any binary quantifier with the in-
dicated monotonicity properties, and QM and QF
are MORE THAN and FEWER THAN, respectively.
We can naturally extend this to account for left-side
monotonicity inferences, whose directionality only
depends on the first quantifier (Sippel, 2017).

Complexity
As for our complexity measure, there are three cru-
cial ideas we borrow from Geurts (2003): Firstly,
the number of reasoning steps from premises to a
conclusion is the length of its minimal proof in a
natural logic (i.e. how much solving a problem as
efficiently as possible costs in our natural logic). Sec-
ondly, some reasoning steps are harder than others.
Thirdly, we can account for this variation in difficulty
by assigning a cost to inference rules, summing up
to different overall costs for different proofs. As far
as possible, we will motivate weights on semantic
grounds.

The four combinations of right-side monotonicity
properties for iterated quantifiers are ↑↑, ↑↓, ↓↑ and
↓↓. We immediately see how many of the quantifiers
involved ”go up“ and whether both have the same di-
rectionality. Similar as Geurts (2003), we propose a
cost-based system in which less favorable inferential



properties add to the cognitive cost of a reasoning
task: firstly, upward is easier than downward (Clark,
1974). Secondly, inferences are harder when the they
do not have the same directionality - call this har-
mony, or rather its absence (Geurts & van der Silk,
2005, 104). Thirdly, if the first quantifier is down-
ward entailing, it turns the entailment direction of
the second quantifier upside down, hence requiring
additional processing. Furthermore, if an iterated
quantifier is negative (e.g. not all), the associated
monotonicity-inference is harder. This is embedded
in a rich research-tradition showing that negation is
harder to process (e.g. Wason (1961)).

From a semantic point of view, ALL and NO are
the most informative. They are somewhat on top of
a monotonicity-based semantic food chain and allow
for inferences that less informative ones do not:

ALL(A,B)⇒ Q ↑ (A,B)
NO(A,B)⇒ Q ↓ (A,B)

For any quantifier with the right monotonicity proper-
ties. Let us now turn to symmetry and its associated
inference of conversion. Geurts (2003) claims that
while pConv has small cognitive cost, Conv itself has
none. This was criticized by Newstead (2003) who is
especially reluctant to accept the low cognitive cost
of pConv. In absence of any empirical evidence on
this (Newstead, 2003, 195), we will settle somewhat
on the middle ground: Conv is not without any, but
with very small cognitive cost, so is pConv.

The assumption that statements using ALL refer to
non-empty sets allows for the inference exImp and is
usually taken for granted in experimental design but
unpopular with some researchers (Chater & Oaks-
ford, 1999). The work of Katsos, Cummins, et al.
(2016), while concerned with quantifier acquisition,
offers some important insight on why that might be.
As part of their study, they investigate how adults
deal with underinformative quantifiers. In 84% of all
cases were the statement was true but underinforma-
tive, the statement was rejected by the participants
(Katsos et al., 2016, 9246). The weights for infer-
ences on single quantifiers that we propose according
to our considerations on cognitive difficulty above
are as in table 1.3 The weights in table 2 are directly

3Zhai, Szymanik, and Titov (2015) had the weights for
a similar logic learned from data.

Table 1: Weights for the inference rules used on the
syllogistic fragment. Mon stands for all monotonic-
ity inferences and MonN for monotonicity inferences
involving NOT ALL or ALL NOT.

exImp MonN Mon pConv Conv
60 30 10 5 5

Table 2: Weights for the inference rules on iterated
quantifiers. All numbers are rounded up.

Mon↑↑ Mon↑↓ Mon↓↑ Mon↓↓
0/15 23/38 38/53 30/45

derived from those in table 1 using the considerations
on monotonicity interactions that make inferences
easy or difficult above. Where there are two values,
the first one holds when the first quantifier is NO or
ALL and the second one if not (this reflects above fact
that inferences on informative quantifiers are easier).
The weights are interpreted as cost that is subtracted
from an initial ”cognitive reservoir“ of 100 units (as
done in Geurts (2003)) - this move does in fact not
impact the results of our statistical analysis but al-
lows for better readability and stronger hypotheses:
where we before could only observe correlations be-
tween weights and cognitive difficulties, we can now
make predictions. Tables 3 and 4 provide with two
examples of proofs that show how this works.

Evaluation of the Model
We prove all syllogisms that are valid in Aristotelian
logic or predicate calculus (or both) and compute
the model’s predictions for all of them, see details in
Sippel (2017). The results, i.e. the model’s predic-
tions for valid syllogisms, can be seen in table 5 – we

Table 3: Complexity = Conv+Mon = 15, thus pre-
dicted mean success Success = 100−15= 85 (actual
mean success rate in experiments: 89%).[

1
]

ALL(M,P) premiss[
2
]

SOME(M,S) premiss[
3
]

SOME(S,M) Conv on
[
2
][

4
]

SOME(S,P) ↑Mon on
[
1
]

and
[
3
]



Table 4: Complexity = pConv+MonN + exImp =
95, this predicted mean success Success = 100−
95 = 5 (actual mean success rate in experiments:
1%).[

1
]

ALL(P,M) premiss[
2
]

NO(S,M) premiss[
3
]

ALL NOT(S,M) pConv on
[
2
][

4
]

ALL NOT(S,P) Mon↓ on
[
4
]

and
[
1
][

5
]

SOME NOT(S,P) exImp on
[
4
]

Table 5: Comparison of the cognitive difficulty of
valid syllogisms (Chater & Oaksford, 1999) in brack-
ets, our model, #2, and Geurts’ model (Geurts, 2003),
#3. The codes of three letters and one number denote
syllogisms as it is usually done in the literature, see
e.g. Khemlani and Johnson-Laird (2012). Predic-
tions that are more than 10% off from mean success
rates in experiments are marked as gray.

Syll #1 #2 #3 Syll #1 #2 #3
AI1I (92) 90 80 EI2O (52) 60 60
IA4I (91) 85 80 EI3O (48) 60 60
AA1A (90) 90 80 AA3I (29) 30 60
AI3I (89) 85 80 EI4O (27) 55 60
EA2E (89) 85 80 EA3O (22) 5 40
AE2E (88) 90 80 AA4I (16) 25 60
EA1E (87) 90 80 EA4O (8) 0 40
AE4E (87) 85 80 AA1I (5) 30 60
IA3I (85) 90 80 EA1O (3) 5 40
OA3O (69) 70 70 EA2O (3) 0 40
AO2O (67) 70 70 AE4O (2) 0 40
EI1O (66) 65 60 AE2O (1) 5 40

obtain r2 = 0.93 and Pearson r= 0.96. The model
thus already outperforms that of Geurts (2003), the
increased performance is however best visible by the
fact that predictions that are more than 10% off on
those 24 syllogisms went down from 13 to 4. An
interesting direction for further research would be
to investigate whether this increased performance is
due to more adequate weights or rather to the inclu-
sion of left-side monotonicity rules. The evaluation
of the model on inferences with iterated quantifiers
can be seen in table 6: we obtain r2 = 0.88 and Pear-
son r= 0.94. The proposed natural logic is thus well
capable of capturing the general trends and predicts
much of the variance in the empirical data.4

4As for the limited space, we have not yet talked about
competing cognitive models for syllogistic reasoning. In
Sippel (2017), we show that the main competing mod-

Table 6: Comparison of the cognitive difficulty
of reasoning with iterated quantifiers (Geurts and
van der Silk (2005), in brackets) and our model’s
predictions.

DetA DetB Minor % Model
AT LEAST↑ MORE THAN↑ ALL(B,C) (96) 85
EVERY↑ MORE THAN↑ ALL(B,C) (91) 100
MOST↑ MORE THAN↑ ALL(B,C) (91) 85
SOME↑ MORE THAN↑ ALL(B,C) (87) 85
NO↓ FEWER THAN↓ ALL(B,C) (73) 70
EVERY↑ FEWER THAN↓ ALL(C,B) (71) 77
MOST↑ FEWER THAN↓ ALL(C,B) (62) 62
SOME↑ FEWER THAN↓ ALL(C,B) (60) 62
NO↓ MORE THAN↑ ALL(C,B) (53) 62
AT LEAST↑ FEWER THAN↓ ALL(C,B) (53) 62
AT MOST↓ MORE THAN↑ ALL(C,B) (38) 47
AT MOST↓ FEWER THAN↓ ALL(B,C) (36) 55

Conclusions & Predictions
We have successfully refined the model in Geurts
(2003), especially its complexity measure, and ex-
tended it to reasoning with iterated quantifiers. Per-
formance on the data collected by Geurts and van der
Silk (2005) also indicates good predictive capacities
for reasoning with iterated quantifiers – but while
the logic and its complexity measure is grounded in
semantic relationships and psychological evidence,
it might also seem somewhat post hoc – there is
barely direct evidence accounting for the weight-
assignments but mostly related evidence. Luckily,
the model allows for empirically testable predictions,
e.g. that reasoners accept exImp-inferences while be-
ing reluctant to draw them themselves (a hypothesis,
which would, in fact, explain reasoner’s preference
for the right-hand side syllogism over the left-hand
side one above), that left-side monotonicity infer-
ences are not harder that their right-side counter-
parts (in fact, on iterated quantifiers, they should
be easier as they involve no change of directional-
ity), and that the model can be extended to account
for further experiments on reasoning with quanti-

els by Geurts (2003), Chater and Oaksford (1999) and
Johnson-Laird and Bara (1984) all give raise to identical
categories of cognitively difficult syllogisms. A decision
for one model over its competitors can thus not be made
on grounds of good fit with empirical data. Geurts’ model
– as we have shown throughout this work – however gives
us a strong, flexible measure of complexity and is the only
one that can be easily extended to reasoning with iterated
quantifiers.



fiers. With the pluralistic view of logic in mind, we
can thus conclude that it is worthwhile to reevaluate
logic’s possible contributions to the science of rea-
soning. Our model indicates that a natural logic can
in fact predict human performance for more complex
symbolic reasoning patterns. It confirms that, as
proposed, e.g., by Isaac, Szymanik, and Verbrugge
(2014); Szymanik (2016), logic can contribute to our
understanding why some cognitive tasks are easier
than others.
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